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These are lecture notes for an advanced course which I plan to give at the
Centre de Recerca Matemàtica near Barcelona in January 2014. This is the
version I wrote before giving the lectures. I suppose some errors and typos
will be detected and corrected during the lectures.

The topic is one of my favorites – central configurations of the n-body
problem. I gave a course on the same subject in Trieste in 1994 and wrote
up some notes (by hand) which can be found on my website [29]. For the
new course, I tried to focus on some new ideas and techniques which have
been developed in the intervening twenty years. In particular, I consider
space dimensions bigger than three. There are still a lot of open problems
and it remains an attractive area for mathematical research.

1. The n-Body Problem

The Newtonian n-body problem is the study of the dynamics of n point
particles with masses m

i

> 0 and positions x
i

2 Rd, moving according to
Newton’s laws of motion:

(1) m
j

ẍ
j

=
X

i 6=j

m
i

m
j

(x
i

� x
j

)

r3
ij

1  j  n

where r
ij

= |x
i

� x
j

| is the Euclidean distance between x
i

and x
j

. Al-
though we are mainly interested in dimensions d  3, it is illuminating and
entertaining to consider higher dimensions as well.

Let x = (x1, . . . , xn) 2 Rdn be the configuration vector and let

(2) U(x) =
X

i<j

m
i

m
j

r
ij

.

be the Newtonian potential. Then we have

(3) m
j

ẍ
j

= r
j

U(x) 1  j  n

where r
j

denotes the d-dimensional partial gradient with respect to x
j

or

(4) Mẍ = rU(x)

where r is the dn-dimensional gradient and M = diag(m1, . . . ,mn

) is the
matrix with d copies of each mass along the diagonal. (Later there will be
an n⇥ n mass matrix, also called M .)

Let v
j

= ẋ
j

2 Rd be the velocity vectors and v = (v1, . . . , vn) 2 Rdn.
Then there is an equivalent first-order system

ẋ = v

v̇ = M�1rU(x).

Since Newtonian potential is singular at collisions, we have to restrict x to
the configuration space Rnd \� where

(5) � = {x : x
i

= x
j

for some i 6= j}
is the singular set.

113



114

The phase space for the first-order system is (Rnd \�) ⇥ Rnd. Newton’s
equations are conservative. The total energy

H = K(v)� U(x) K =
nX

j=1

m
j

|v
j

|2

is constant along solutions in phase space.
Even though we are considering the n-body problem in Rd, it may happen

that the motion takes place is a subspace W. In fact, let W ⇢ Rd be any
subspace. If all of the positions and velocities satisfy x

j

, v
j

2 W, (1) shows
that the acceleration vectors are also in W. It follows that Wn \�⇥Wn is
an invariant set for the flow in phase space. In particular we can consider
the smallest subspace containing all of the positions and velocities

S(x, v) = span{x
j

, v
j

: j = 1, . . . , n} ⇢ Rd.

If (x(t), v(t)) is any solution, then S(x(t), v(t)) is independent of t. It will
be called the motion space of the solution.

2. Symmetries and Integrals

Newton’s equations are invariant under simultaneous translations and ro-
tations of all of the positions and velocities x

j

, v
j

2 Rd. Symmetry under
translations gives rise, via Nöther’s theorem [5], to the conservation of the
total momentum vector

p = m1v1 + . . .+m
n

v
n

.

Let

(6) c =
1

m0
(m1x1 + . . .+m

n

x
n

) m0 = m1 + . . .+m
n

be the center of mass where m0 is the total mass. Then

ċ = p/m0

ṗ = 0

so c(t) moves in a straight line with constant velocity. It follows that the
positions relative to the center of mass, y

j

(t) = x
j

(t)�c(t) are also solutions
of Newton’s equations. These have center of mass at the origin and total
momentum zero. A solution with this property will be called centered. We
will use the notation

x� c = (x1 � c, . . . , x
n

� c) 2 Rdn

for the configuration relative to the center of mass.
For any configuration x the vectors x

j

�c, j = 1, . . . , n span a subspace of
Rd which we will call the centered position space and denote by C(x). It is
natural to define the dimension of a configuration to be dim (x) = dim C(x).
The maximum possible dimension of a configuration of the n-body problem
is n � 1. For example, every configuration of the three-body problem has
dimension 1 (collinear) or 2 (planar).
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The rotation group SO(d) in Rd has dimension
�
d

2

�
= d(d�1)

2 . The Lie
algebra so(d) consists of all anti-symmetric d⇥ d matrices. If Q(t) is a one
parameter subgroup, it can be written as a matrix exponential

Q(t) = et↵ ↵ 2 so(d).

From linear algebra we know that there is a rotation S 2 SO(d) putting ↵
into the normal form:

S�1↵S = diag(a1j, . . . , a
k

j, 0 . . . , 0) j =


0 �1
1 0

�

where a
i

2 R. Then ↵ has even rank, 2k. The one-parameter group satisfies

S�1Q(t)S = diag(⇢(a1t), . . . , ⇢(a
k

t), 1, . . . , 1) ⇢(✓) =


cos(✓) � sin(✓)
sin(✓) cos(✓)

�
.

Thus Q(t) acts by rotation at di↵erent rates in k orthogonal planes while
fixing the part of Rd orthogonal to these planes.

For example, in R3, an angular velocity matrix can be written

↵ =

2

4
0 �c b
c 0 �a

�b a 0

3

5

and the block-diagonal normal form is

S�1↵S =

2

4
0 �a1 0
a1 0 0
0 0 0

3

5 a1 = ±
p
a2 + b2 + c2.

The corresponding one-parameter group is a rotation around the angular
velocity vector (a, b, c) with constant angular speed |a1|.

Symmetry under rotations implies that the angular momentum is pre-
served. The angular momentum (with respect to the origin) can be repre-
sented by an anti-symmetric d⇥ d matrix !(x, v) with entries

(7) !
kl

=
nX

j=1

m
j

(x
jk

v
jl

� x
jl

v
jk

)

where x
jk

, v
jk

denote the k-th components of the vectors x
j

, y
j

2 Rd. In
case d = 2, the angular momentum reduces to a scalar !12 while if d = 3 it
can be viewed as a vector

! = (!23,!31,!12) =
nX

j=1

m
j

x
j

⇥ v
j

where ⇥ denotes the cross product in R3.
The Newtonian potential is homogeneous of degree �1 and its gradient

is homogeneous of degree �2. It follows that if x(t) is any solutions of (1)
and if � > 0 is constant, then x̃(t) = �2x(��3t) is also a solution. This will
be called the scaling symmetry of the n-body problem.
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For any configuration x, the moment of inertia with respect to the center
of mass is

(8) I(x) = (x� c)TM(x� c) =
X

j

m
j

|x
j

� c|2

where y is the corresponding centered configuration. I(x) is homogeneous
of degree 2 with respect to the scaling symmetry. The following alternative
formula in terms of mutual distances is also useful

(9) I(x) =
1

m

X

i<j

m
i

m
j

r2
ij

.

3. Central Configurations and Self-Similar Solutions

At this point we can define the concept which we be the main focus of
these notes.

Definition 1. A central configuration (CC) for masses m1, . . . ,mn

is an
arrangement of the n point masses whose configuration vector satisfies

(10) rU(x) + �M(x� c) = 0

for some real constant �.

Multiplying (10) on the left by (x� c)T and using the translation invari-
ance and homogeneity of U(x) shows that

� =
U(x)

I(x)
> 0

where I(x) is the moment of inertia with respect to c from (8). If x is a
central configuration then the gravitational acceleration on the j-th body
due to the other bodies is

ẍ
j

= 1
mj

r
j

U(x) = ��(x
j

� c).

In other words, all of the accelerations are pointing toward the center of
mass, c, and are proportional to the distance from c. We will see that this
delicate balancing of the gravitational forces gives rise to some remarkably
simple solutions of the n-body problem. Before describing some of these, we
will briefly consider the question of existence of central configurations.

For given massesm1, . . . ,mn

it is far from clear that (10) has any solutions
at all. We will consider this question in due course. For now we just note the
existence of symmetrical examples for equal masses. If all n masses are equal
we can arrange the bodies at the vertices of a regular polygon, polyhedron
or polytope. Then it follows from symmetry that the acceleration vectors
of each mass must point toward the barycenter of the configuration. This is
the condition for a central configuration, i.e., there will be some � for which
the CC equations hold.

In R2 we can put three equal masses at the vertices of an equilateral
triangle or n equal masses at the vertices of a regular n-gon to get simple
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examples. One can also put an arbitrary mass at the center of a regular
n-gon of equal masses as in figure 1 (left). In R3 we have the five regular
Platonic solids, the tetrahedron, cube, octahedron, dodecahedron and icosa-
hedron. It is not clear what to do if n 6= 4, 6, 8, 12, 20 however. It turns out
that there are six kinds of regular, convex four-dimensional polytopes but in
higher dimensions there are only three, namely the obvious generalization
of the tetrahedron, cube and octahedron [10, 21].

The regular d-simplex provides an example of a central configuration of
d + 1 equal masses in Rd generalizing the equilateral triangle and tetrahe-
dron. Remarkably, these turn out to be central configurations even when
the masses are not equal (see proposition 11) so we do indeed have at least
one CC for any choice of masses, provided we are willing to work in high-
dimensional spaces.

Less obvious examples can be found by numerically solving (10), for ex-
ample the asymmetrical CC of 8 equal masses shown in figure 1 (right).

Figure 1. Central configurations

Central configurations can be used to construct simple, special solutions
of the n-body problem where the shape of the figure formed by the bodies
remains constant. The configuration changes only by simultaneous transla-
tion, rotation and scaling. In other words, the configurations x(t) at di↵erent
times are all similar. In this case the configuration relative to the center of
mass will change only by scaling and rotation.

Definition 2. A solution of the n-body problem is self-similar or homo-
graphic if it satisfies

(11) x(t)� c(t) = r(t)Q(t)(x0 � c0)

where x0 is a constant configuration, r(t) > 0 a real scaling factor and
Q(t) 2 SO(d) a rotation. Here c(t), c0 are the centers of mass of x(t), x0.
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Two special cases are the homothetic solutions where

(12) x(t)� c(t) = r(t)(x0 � c0)

and the rigid motions or relative equilibrium solutions where

(13) x(t)� c(t) = Q(t)(x0 � c0)

The simplest of these are the homothetic solutions. For example, if put
three equal masses at the vertices of an equilateral triangle and release them
with initial velocities all zero, it seems clear that the triangle will just col-
lapse to the center of mass with each particle just moving on a line toward
the center. It turns out that such a solution is possible only when x0 is a
central configuration.

Proposition 1. If x0 is a central configuration with constant � and if r(t)
is any solution of the one-dimensional Kepler problem

(14) r̈(t) = � �

r(t)2

then x(t) as in (12) is a homothetic solution of the n-body problem and every
homothetic solution is of this form.

Proof. Substituting x(t) from (12) into Newton’s equation (4) gives

r̈(t)M(x0 � c0) = rU(x(t)) = r(t)�2rU(x0).

Now rU(x0) 6= 0 for all x0, so this equation is satisfied if and only if there
is some constant, call it ��, such that

r̈(t)r(t)2 = �� � �M(x0 � c0) = rU(x0). QED

The one-dimensional Kepler problem (14) describes the motion of a point
on a line gravitationally attracted to a mass � at the origin. It is easy to
see qualitatively what will happen even without solving it. For example,
the solution r(t) with initial velocity ṙ(0) = 0 collapses to the origin in both
forward and backward time. The corresponding homothetic solutions main-
tain the shape of the underlying central configuration x0 while collapsing to
a total collision at the center of mass in both forward and backward time.
Each body moves along a straight line toward the collision. From the ex-
amples of central configurations mentioned above we see that we can have
homothetically collapsing solutions in the shape of an equilateral triangle,
regular n-gon or regular polytope.

It turns out that central configurations also lead to rigid motions and
more general homographic solutions. We will postpone a general discussion
of homographic solutions in Rd to later sections. For now we will to consider
the case of planar motions. Let d = 2 and suppose x0 2 R2n is a central
configuration. Let

Q(✓) =


cos(✓) � sin(✓)
sin(✓) cos(✓)

�
2 SO(2).
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The most general planar homographic motion would be of the form

(15) x(t)� c(t) = r(t)Q(✓(t))(x0 � c0)

for some functions r(t) > 0, ✓(t). Substituting this into Newton’s equation
leads, after some simplifications, to

(r̈ � r ✓̇2)M(x0 � c0) + (r ✓̈ + 2 ṙ ✓̇)JM(x0 � c0) = r�2rU(x0)

where J is the 2n⇥ 2n matrix

J = diag(j, . . . , j) j = Q(✓)�1Q0(✓) =


0 �1
1 0

�
.

Now (x0�c0) and J(x0�c0) are nonzero, orthogonal vectors in R2n and the
latter is also orthogonal to rU(x0). Therefore, there must be some constant
�� such that

(16)
r̈(t)� r(t)✓̇(t)2 = � �

r(t)2

r(t)✓̈(t) + 2ṙ(t)✓̇(t) = 0

and

��M(x0 � c0) = rU(x0).

The di↵erential equation is just the two-dimensional Kepler problem in
polar coordinates whose solutions are of the familiar elliptical, parabolic or
hyperbolic types and the last equation is the CC equation. Thus

Proposition 2. If x0 is a planar central configuration with constant � and
if r(t), ✓(t) is any solution of the two-dimensional Kepler problem (16) then
(15) is a planar homographic solution and every such solution is of this form.

As a special case, we could take a circular solution of the Kepler problem
with r(t) = 1. Then we get a rigid motion or relative equilibrium solution
where the planar central configuration just rotates at constant angular speed
around the center of mass. This is the most general relative equilibrium
solution in the plane. In particular, non-uniform rotations are not possible.

In higher dimensions, the situation regarding rigid solutions and non-
homothetic homographic solutions is more complicated. mainly due to the
increased complexity of the rotation group SO(d). The next few sections de-
scribe an approach to the general case developed by Albouy and Chenciner.

4. Matrix Equations of Motion

We will now describe an interesting reformulation of the n-body problem
due to Albouy and Chenciner [1, 3, 8] which is very convenient for studying
symmetric solutions. Let

X =
⇥
x1| . . . |xn

⇤
V =

⇥
v1| . . . |vn

⇤
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be the d⇥ n matrix whose columns are the positions and velocities of the n
bodies. For example, the matrix

(17) X =

2

6666664

1 �1
2 �1

2

0
p
3
2 �

p
3
2

0 0 0

0 0 0

3

7777775

represents a configuration of n = 3 bodies in d = 4 dimensions arranged at
the vertices of an equilateral triangle.

We will view X,V as linear maps X,V : Rn ! Rd. The domain of these
maps has no particular physical meaning; it is just a space of n⇥ 1 column
vectors ⇠ with one coordinate for each of the n-bodies. We can think of the
standard basis vectors e1, . . . , en as representing the di↵erent bodies.

While the columns of X,V have an immediate dynamical meaning, it is
not clear what to think about the rows. These are 1 ⇥ n vectors which we
will view as elements of the dual space Rn⇤, another non-physical space. For
example, the first row

⇥
1 �1

2 �1
2

⇤
of the matrix above gives the coe�cients

of a linear function whose values on the basis vectors e1, e2, e3 of R3 are the
first coordinates of the three bodies in R4.

To get the matrix version of the laws of motion, write the j-th acceleration
vector from Newton’s equations (1) as a linear combination of the position
vectors:

ẍ
j

=
1

m
j

r
j

U(x) =
X

i 6=j

m
i

(x
i

� x
j

)

r3
ij

=
X

i 6=j

x
i

m
i

r3
ij

� x
j

0

@
X

i 6=j

m
i

r3
ij

1

A .

So we get the matrix equation:

(18) Ẍ = XA(X)

where A(X) is the n⇥ n matrix:

(19) A(X) =

2

6666664

A11
m1
r

3
12

· · · m1
r

3
1n

m2
r

3
12

A22 · · · m2
r

3
2n

...
...

mn
r

3
1n

mn
r

3
2n

· · · A
nn

3

7777775
A

jj

= �
X

i 6=j

A
ij

= �
X

i 6=j

m
i

r3
ij

.

Note that A(X) is invariant under translations and rotations, since it in-
volves only the mutual distances. It is independent of the space dimension d.
For example, consider the three-body problem in Rd where we have the 3⇥3
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matrix

A =

2

6664

�m2
r

3
12

� m3
r

3
13

m1
r

3
12

m1
r

3
13

m2
r

3
12

�m1
r

3
12

� m3
r

3
23

m2
r

3
23

m3
r

3
13

m3
r

3
23

�m1
r

3
13

� m2
r

3
23

3

7775
.

A(X) has some other useful properties. Let M = diag(m1, . . . ,mn

) be an
n⇥ n version of the mass matrix. Then we have

XA(X)M =
⇥
r1U(X) . . . r

n

U(X)
⇤
.

In addition, A(X)M is symmetric:

AM = (AM)T = MAT .

Finally, A(X)M is negative semi-definite. Indeed, for any ⇠ 2 Rn one can
check that

⇠TAM⇠ = �
X

i<j

m
i

m
j

r3
ij

(⇠
i

� ⇠
j

)2.

We will also need a matrix version of the first-order di↵erential equations
of the n-body problem:

(20)
Ẋ = V

V̇ = XA(X).

The d⇥ 2n matrix
Z =

⇥
X V

⇤

will be called the state matrix.
It is interesting to look at the symmetries and integrals of the n-body

problem from the matrix point of view. Let k 2 Rd be a d ⇥ 1 column
vector. The translation x

j

7! x
j

+ k has the e↵ect of adding k
i

L to the i-th
row of X, where

L =
⇥
1 . . . 1

⇤
2 Rn⇤

is the 1 ⇥ n row vector of 1’s. In other words the configuration matrix
transforms by addition of the d⇥ n matrix kL:

(21) X 7�! X + kL.

We call two d ⇥ n matrices X,Y translation equivalent if Y = X + kL for
some k 2 Rd. If X,Y are translation equivalent then the corresponding
linear maps X,Y : Rn ! Rd take the same values when restricted to the
hyperplane

D⇤ = L? =
�
⇠ 2 Rn : L⇠ = ⇠1 + . . .+ ⇠

n

= 0
 
.

The converse also holds so translation equivalence amounts to saying that

X|D⇤ = Y |D⇤ .

The notation D⇤, due to Albouy and Chenciner [3], is explained as follows.
The quotient vector space Rn

⇤
/L is called the disposition space and denoted

by D. Then L? can be identified with its dual vector space.
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With this notation, the total mass and center of mass can be written

(22) m0 = Lm c =
1

m0
Xm

where m is the n⇥ 1 column vector

m =
⇥
m1 . . . m

n

⇤
T

.

A state will have center of mass at the origin and total momentum zero if

Xm = V m = 0.

We will call a d⇥ n matrix X centered if Xm = 0.

Proposition 3. Given a d⇥n matrix X, there is a unique centered matrix
Y translation equivalent to X, namely

Y = X � C C = cL

where c is the center of mass (22). Moreover

Y = XP P = I � 1

m0
mL.

The n ⇥ n matrix P represents the orthogonal projection of Rn onto the
hyperplane D⇤ with respect to the inverse mass inner product on Rn.

Proof. Let Y = X � cL. Then Y is translation equivalent to X and is
centered if and only if c is given by (22). In this case it is easy to check that
Y = XP where P is as claimed. We have

P 2 = P LP = 0.

Hence, the linear map P : Rn ! Rn is a projection map of Rn onto D⇤. One
can also check that P is an M�1-symmetric matrix:

P TM�1 = M�1P

where M is the mass matrix. It follows that P represents the orthogonal
projection onto D⇤ with respect to the inner product h⇠, ⌘i = ⇠TM�1⌘. QED

If the matricesX(t), V (t) solve Newton’s equations (20) so do the centered
matrices

Y (t) = X(t)� C(t) = X(t)P W (t) = V (t)P

which describe the dynamics relative to the center of mass. This was shown
already in section 2 but it can also be verified directly from (20) with the
help of the following easily verified formulas:

(23) A(X) = A(XP ) = A(X � C) = A(X)P = PA(X)

The following facts about the right-hand side of Newton’s equation are also
useful

(24) CA(X) = A(X)C = 0 XA(X) = (X � C)A(X � C).

We will use the matrix formulation to study central configurations and ho-
mographic solutions in Rd. The factorization (18) of the equations of motion



123

is very useful for understanding symmetrical solutions. The CC equation
(10) for configuration vectors gives the following equation for configuration
matrices:

(25) XA(X) + �(X � C) = 0.

5. Homographic Motions of Central Configurations in Rd

We have already defined homographic, homothetic and rigid solutions.
The configuration matrix of a homographic solution will satisfy

(26) X(t)� C(t) = r(t)Q(t)(X0 � C0).

Homothetic and rigid solutions are of the same form but with Q(t) = I and
r(t) = 1, respectively.

We have seen in Proposition 1 that every homothetic motion comes from
a CC, x0, with r(t) a solution of the one-dimensional Kepler problem. Also,
from Proposition 2 shows that planar CC’s can execute Keplerian homo-
graphic motions. The next result treats Keplerian homographic motions of
central configurations in Rd.

Proposition 4. Let X0 be the configuration matrix of a central configuration
with constant � and let C(x0) = im(X0�C0) be its centered position subspace.
Suppose there is an antisymmetric d ⇥ d matrix J such that J2|C = �I|C.
Then for any solution r(t), ✓(t) of the planar Kepler problem (16) there is a
homographic solution of the form (26) with

Q(t) = exp(✓(t)J).

Proof. Since X0 is a CC the right-hand side of (18) is

rQ(X0 � C0)A(rQ(X0 � C0)) = r�2QX0A(X0) = � �

r2
Q(X0 � C0)

where we have used the homogeneity and the translation and rotation in-
variance of A. The left-hand side is

Ẍ = r̈Q(X0 � C0) + 2ṙQ̇(X0 � C0) + rQ̈(X0 � C0).

We have

Q̇ = ✓̇(t)JQ Q̈(t) = ✓̈(t)JQ+ (✓̇(t))2J2Q

Since J and Q commute and J2(X0 � C0) = �(X0 � C0) we get

Ẍ = (r̈ � r(✓̇)2)Q(X0 � C0) + (r✓̈ + 2ṙ✓̇)QJ(X0 � C0).

Since r(t), ✓(t) are solutions of the Kepler problem, this reduces to

Ẍ = � �

r2
Q(X0 � C0)

as required. QED
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Recall that a complex structure on a vector space S is given by a linear map
J : S ! S with J2 = �I. If there is an inner product with respect to which
J is antisymmetric then we have a Hermitian structure. An antisymmetric
matrix J as above with J2|C = �IC determines a Hermitian structure on
the larger space

S = C + JC.
To see this note that S is J-invariant. If ⌘ 2 JC then ⌘ = J⌘ for some ⇠ 2 C
and we get

J2⌘ = J3⇠ = J(�⇠) = �⌘

Thus we actually have
J2|S = �IS .

Since J is nondegenerate it has even rank and so dimS must be even. S is
the motion space of the Keplerian homographic motion in the proposition.

Thus a necessary condition that a CC x0 admits a matrix J as above
is that C(x0) be contained in an even dimensional subspace of Rd. Since
any even-dimensional subspace of the Euclidean space Rd has a natural
Hermitian structure where J is rotation by ⇡/2 in k mutually orthogonal
planes, this condition is also su�cient. This will always be possible if either
d is even or dim C < d. The only bad case if when d = dim C is odd. For
example, if we have a collinear central configuration in R1 or a non-planar
configuration in R3, we will not be able to find such an even-dimensional
subspace.

Example 1. Consider the equilateral triangle in R4 whose configuration
matrix X is given by (17). Then dim C = rankX = 2. Then we could choose
J to be a rotation by ⇡/2 in the plane dim C which fixes the orthogonal
complement. The the motion space is also S = C and the triangle rotates
rigidly in its own plane.

On the other hand we could choose

J =

2

664

0 0 �1 0
1 0 0 0
0 0 0 �1
0 1 0 0

3

775 .

Now the motion space will be S = R4. Each body moves in a planar Kep-
lerian orbit, but the orbits are in di↵erent planes. Indeed, we have

X(t) = r(t) cos ✓(t)

2

6666664

1 �1
2 �1

2

0
p
3
2 �

p
3
2

0 0 0

0 0 0

3

7777775
+ r(t) sin ✓(t)

2

6666664

0 0 0

0 0 0

1 �1
2 �1

2

0
p
3
2 �

p
3
2

3

7777775
.

The i-th body moves in the plane spanned by the i-th columns in the two
matrices.
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On the other hand a regular tetrahedron in R3 is not contained in any
even-dimensional subspace. But if we put it in R4 we can choose any 4⇥ 4
J with J2 = �I, such as the one in the last paragraph, and proceed to
construct Keplerian homographic motions.

Note that on the centered position space C(X0), the matrix exponential
in Proposition 4 can be written

Q(t) = exp(✓(t)J) = cos ✓(t)I + sin ✓(t)J.

It follows that for a Keplerian homographic solution as in the proposition,
the j-th body moves in the two-dimensional plane spanned by the vectors
x
j0 , Jxj0. All of the bodies describe similar Keplerian orbits and the overall

configuration remains similar to the CC X0 throughout the motion. In par-
ticular, for each admissible choice of J we get a family of periodic solutions
with elliptical orbits of di↵erent eccentricities. Eccentricity zero gives the
uniform rigid motions and eccentricity one gives the homothetic solutions.

6. Albouy-Chenciner Reduction and Relative Equilibria in Rd.

The matrix formulation of Newton’s equations leads to an elegant way to
reduce by the rotational symmetry. The reduced equations lead to a deeper
understanding of the most general rigid and homographic motions. This sec-
tion is based on the work of Albouy and Chenciner in [3], [8]. The Albouy-
Chenciner method of reducing the equations of motion is a far-reaching gen-
eralization of Lagrange’s reduction method for the three-body problem [18].

Starting from the matrix equations of motion (20), we can eliminate the
rotational symmetry of the n-body problem by passing to Gram matrices.

B(X) = XTX C(X,V ) = XTV D(V ) = V TV.

The entries of these matrices are the dot products of the position and velocity
vectors:

B
ij

= x
i

· x
j

C
ij

= x
i

· v
j

D
ij

= v
i

· v
j

.

It follows that the matrices are invariant under simultaneous rotation of all
positions and velocities in Rd. In other words, if Q 2 SO(d) is any rotation
matrix then

B(QX) = B(X) C(QX,QV ) = C(X,V ) D(QV ) = D(V ).

Note also that B(X), D(V ) are symmetric and positive semi-definite.
To eliminate the translational symmetry we can work with the centered

matrices Y = X � C = XP and W = V P .

Definition 3. Given configuration and velocity matrices X,V then B(XP )
= B(X � C) is the relative configuration matrix and B(XP ), C(XP, V P ),
D(V P ) are the relative state matrices. If X(t), V (t) is a solution, we will
write B(t), C(t), D(t) for the corresponding relative state matrices.
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An alternative approach to eliminating the center of mass is just to view
all of these matrices as representations of bilinear forms on the hyperplane
D⇤. In other words, only the values ⇠TB⌘ for ⇠, ⌘ 2 D⇤ are significant.
Let’s call two n ⇥ n matrices translation equivalent if they define the same
bilinear form on D⇤. Then, for example B(X) = XTX and B(X � C) =
(X � C)T (X � C) are translation equivalent. In fact any matrix obtained
from B by adding multiples of L to the rows and multiples of LT to the
columns will be translation equivalent. Starting from B(X) we get a par-
ticularly simple representative by adding subtracting 1

2 |xi|
2L from the i-th

row and 1
2 |xj |

2L column. The diagonal entries of the new matrix are 0 and
the o↵ diagonals are

xT
i

x
j

� 1

2
|x

i

|2 � 1

2
|x

j

|2 = �1

2
|x

i

� x
j

|2 = �1

2
r2
ij

.

Thus the following matrix is translation equivalent to B(X) and B(X �C):

(27) B̂(X) = �1

2

2

6666664

0 r212 . . . r21n

r221 0 . . . r22n
...

...

r2
n1 . . . r2

n(n�1) 0

3

7777775
.

Using (20) it is easy to derive di↵erential equations for the matrices
B,C,D. One finds

(28)

Ḃ = C + CT

Ċ = D +BA

Ḋ = CTA+ATC.

These apply equally to the original Gram matrices B(X), C(X,V ), D(V )
and to the translation reduced versions.

Recall that A(X) = A(X �C) depends only on the mutual distances r
ij

.
The mutual distances can be expressed in terms of the Gram matrix B since

r2
ij

= |x
i

� x
j

|2 = |x
i

|2 + |x
j

|2 � 2x
i

· x
j

= B
ii

+B
jj

� 2B
ij

.

Hence we can view A as a function A(B). Then the system (28) could be
used to find the time evolution of the relative state matrices B,C,D without
reference to the actual state variables X,V .

At this point we can write down the reduced version of the CC equation.

Proposition 5. Let X be a d ⇥ n configuration matrix. Then X is a CC
with constant � if and only if the relative configuration matrix B(X � C)
satisfies

(29) BA(B) + �B = 0.
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Proof. By hypothesis, we have XA(X) + �(X � C) = 0. Multiplying by
(X �C)T and using the translation and rotation invariance of A gives (29).
Conversely, if (29) holds we get

(X � C)T (XA(X) + �(X � C)) = 0.

To eliminate the (X � C)T note that the matrix in parentheses has range
contained in im(X �C). Since im(X �C)\ ker(X �C)T = {0}, the matrix
in parentheses must vanish. QED

The angular momentum is equivariant with respect to rotations:

!(QX,QV ) = Q!(X,V )QT = Q!(X,V )Q�1

for Q 2 SO(d). The eigenvalues of !(X,V ) are rotation invariant and pro-
vide constants of motion for the relative equations.

Next we will use the reduced equations to study general rigid motions of
the n-body problem. For a rigid motion we have

(30) X(t)� C(t) = Q(t)(X0 � C0)

for some Q(t) 2 SO(d) and the relative configuration matrix

B(t) = B(X � C)

is constant. Conversely, if B(t) is constant then all of the mutual distances
are constant and (30) holds for some Q(t) 2 SO(d). Thus rigid motions are
characterized by the constancy of B(t). It turns out that the other relative
state matrices are also constant, so we have an equilibrium point of (28).

Proposition 6. X(t), V (t) are the state matrices of a rigid motion solu-
tion of the n-body problem in Rd if and only if the relative state matrices
B(t), C(t), D(t) are constant.

Proof. We have seen that X(t), V (t) is a rigid motion if and only if B(t)
is constant. It remains to show that the constancy of B implies that of C
and D. Assuming Ḃ = 0 we also get Ȧ = ˙A(B) = 0. Now use (28) to
calculate the derivatives of B(t).

Ḃ = C + CT = 0

B̈ = Ċ + ĊT = 2D +BA+ATB = 0
...
B = 2Ḋ = 2(CTA+ATC) = 0.

So we have Ḋ = 0 and also find that 2D = �(BA + ATB) which implies
that

Ċ =
1

2
(ATB �BA).

We need to show that this vanishes. Computing one more derivative gives
....
B = 2(ĊTA+AT Ċ) = (ATB �BA)A�AT (ATB �BA) = 0.

It turns out that this equation can hold only when the quantity in paren-
theses is already zero.
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To see this we use the fact thatAM is a symmetric matrix soAM = MAT .
We have

M(ATB �BA) = MATB �MBA = ATMB �MBA = �[MB,A]

the commutator of MB and A. Similarly

M
�
(ATB �BA)A�AT (ATB �BA)

�
= �[[MB,A], A].

Now the symmetry of AM also gives ATM�1 = M�1A, i.e., A is M�1-
symmetric. This implies that A is diagonalizeable with respect to some
M�1 orthogonal basis. Choose such a basis and let the matrix representing
A be diag(a1, . . . , an) and that representing MB have entries b0

ij

. Then the
entries of [MB,A] and [[MB,A], A] are

b0
ij

(a
i

� a
j

) b0
ij

(a
i

� a
j

)2

respectively. Thus [[MB,A], A] = 0 if and only if [MB,A] = 0 as claimed.
Hence

....
B = 0 implies Ċ = 0 completing the proof. QED

This result justifies the terminology relative equilbrium solution (RE) ap-
plied to rigid motion solutions. We really do have an equilibrium of the
relative equations of motion (28). We have seen that we how to construct
a uniformly rotating relative equilibrium solution based on a central con-
figuration. But it is not at all clear that this is the only kind and indeed,
we will see that rotations of certain non-central configurations are possible.
However, it is true that every rigid motion is a uniform rotation.

Proposition 7. Let X(t), V (t) be any rigid motion (RE) solution. Then
there is a configuration matrix X0 (not necessarily central) and a constant
antisymmetric d⇥ d matrix ↵ such that

X(t)� C(t) = Q(t)(X0 � C0)

where Q(t) = exp(t↵).

We will call ↵ the angular velocity matrix. The proof uses the following
fact from linear algebra.

Lemma 1. Let L1, L2 be d ⇥ k matrices such that kerL1 ⇢ kerL2. Then
there is a d⇥ d matrix J such that

L2 = JL1

Moreover, if imL2 ⇢ imL1 and if the k ⇥ k matrix LT

1 L2 is symmetric
(antisymmetric), then J can be chosen to be symmetric (antisymmetric).

Proof. The hypothesis about the kernels implies that we get a well-defined
linear map imL1 ! Rd by setting J⇠ = L2u when L1u = ⇠. We can
extend it to J : Rd ! Rd by making it vanish on the Euclidean orthogonal
complement (imL1)? and this choice makes the extension unique.

If imL2 ⇢ imL1 then J(imL1) ⇢ imL1. Let ⇠, ⌘ be two vectors in imL1

and write ⇠ = L1u, ⌘ = L1v. Then by definition of J :

⇠TJ⌘ = uTLT

1 L2v.
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If LT

1 L2 is symmetric (antisymmetric), this shows that the restriction of J
to imL1 is also symmetric (antisymmetric). Since we extended trivially on
the orthogonal complement, it is easy to see that the extension has the same
symmetry. QED

Proof of proposition 7. Let Z(t) =
⇥
X(t)P V (t)P

⇤
=
⇥
Y (t) W (t)

⇤
be the

d⇥ 2n centered state matrix and note that the 2n⇥ 2n Gram matrix

ZTZ =


B CT

C D

�

encodes the relative state matrices B,C,D. For a RE solution this matrix
is constant so

ZT Ż + ŻTZ = 0.

In other words, the 2n⇥ 2n matrix

Z(t)T Ż(t)

is antisymmetric. Now apply the lemma with L1 = Z(t), L2 = Ż(t) to get
an antisymmetric d⇥ d matrix ↵(t) such that Ż(t) = ↵(t)Z(t), i.e.,

Ẏ (t) = ↵(t)Y (t) Ẇ (t) = ↵(t)W (t).

In particular, at t = 0 we have

(31) Ẏ (0) = W0 = ↵0Y0 Ẇ (0) = Y0A(Y0) = ↵0W0 = ↵2
0Y0.

We will show that

Y (t) = Q(t)Y0 Q(t) = exp(t↵0)

to complete the proof. Since this function has the right initial conditions,
we need only show that it is a solution of Newton’s equations. We have

Ÿ (t) = ↵2
0Y (t)

so we need to show that

(32) ↵2
0Y (t) = Y (t)A(Y (t)).

From (31) we have

(33) ↵2
0Y0 = Y0A(Y0)

so (36) holds when t = 0. It follows for other times by multiplying by Q(t)
and using the rotation invariance of A. QED

It follows from this result that if X0 is a CC, then the most general
possible rigid motions with shape X0 are the circular Keplerian ones from
Proposition 4. Comparing the antisymmetric matrices which appear in the
two propositions, we should have t↵ = ✓(t)J . Now for the circular Kepler
orbit of radius r = 1 we have ✓̇2 = �. With

(34) ↵ = ±
p
� J

then one can check that for the solution of proposition 4, Ż = ↵Z holds.
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The formulas in the last proof suggest a way to construct rigid motions
whose configurations are not central. The condition (33) is enough to guar-
antee that a corresponding rigid solution exists.

Definition 4. A configuration x is balanced in Rd or d-balanced if there is
a d⇥ d antisymmetric matrix ↵ such that

(35) XA(X)� ↵2(X � C) = 0

or equivalently if

(36) r
j

U(x)� ↵2M(x
j

� c) = 0.

It is called balanced if it is d-balanced for d su�ciently large.

The definition of balanced configurations in [3] is equivalent to the one
given here, but balance in a fixed space Rd is not defined in [3]. The proof
of Proposition 7 show that every balanced configuration gives rise to a uni-
formly rotating relative equilibrium solution (30) with Q(t) = exp(t↵) in
the appropriate ambient space Rd. From (34) we see that every central
configuration is balanced provided it is contained in an even-dimensional
subspace, hence certainly in Rd or in Rd+1. However there exist balanced
configurations which are not central.

Before presenting an example we will derive a couple of equivalent versions
of the concept of balance. Note that if X is balanced then the matrix
S = �↵2 is symmetric and positive semi-definite.

Proposition 8. A configuration is balanced if and only if its configuration
matrix satisfies

(37) XA(X) + S(X � C) = 0

for some positive semi-definite matrix S. Equivalently, the relative configu-
ration matrix B(X � C) should satisfy

(38) BA = (BA)T .

Proof. If X is balanced in Rd then (37) holds with S = �↵2. Conversely
if (37) holds and if d is su�ciently large, then we can solve the equation
S = �↵2 for the antisymmetric matrix ↵. In fact it su�ces to double the
dimension of the space. To see this, assume without loss of generality that
S = diag(�2

1, . . . ,�
2
k

, 0, . . . , 0). Then we can use the block-diagonal matrix

↵ =


0 ��
� 0

�
� = diag(�1, . . . ,�

k

, 0, . . . , 0).

In fact, after a rotation and translation, we could assume that d = dim (x).
Then if x satisfies (37), it will give rise to a rigid motion in R2d, i.e., it will
be 2d-balanced.

Multiplying (37) by (X�C)T and using (24) shows that BA is symmetric.
Conversely suppose BA = (X � C)T (X � C)A(X) is symmetric. Using
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Lemma 1 with L1 = X�C and L2 = (X�C)A(X) gives a symmetric d⇥d
matrix �S with

(X � C)A(X) = �S(X � C)

as required. QED

In the following example we will use (38) to check for balance. Moreover,
we can avoid explicitly shifting the center of mass by just requiring BA =
(BA)T on D⇤.

Example 2. Consider a triangle with sides r12 = r, r13 = s, r23 = t. We will
investigate the inverse problem: given a configurations, find which masses
make it balanced or central. We have

A(X) =

2

6664

�m2
r

3 � m3
s

3
m1
r

3
m1
s

3

m2
r

3 �m1
r

3 � m3
t

3
m2
t

3

m3
s

3
m3
t

3 �m1
s

3 � m2
t

3

3

7775

and

B̂(X) = �1

2

2

6664

0 r2 s2

r2 0 t2

s2 t2 0

3

7775
.

The condition for a balanced triangle is that the restriction of BA to D⇤

be symmetric. To avoid explicitly shifting the center of mass, we calculate
the commutator B̂A�AT B̂ and require that eT

i

(BA�AB)e
j

= 0 for some
basis e1, e2 for the plane D⇤. For example, we could use e1 = (1,�1, 0), e2 =
(1, 0,�1). The result is a 2 ⇥ 2 antisymmetric matrix so there is only one
equation which turns out to be

(39)
m1(s

�3 � r�3)(t2 � r2 � s2) +m2(r
�3 � t�3)(s2 � r2 � t2)

+m3(t
�3 � s�3)(r2 � s2 � t2) = 0.

For the equilateral triangle r = s = t the equation is trivial, so the trian-
gle is balanced for all choices of the masses. Of course we already knew
this since it is a CC for all masses (and is even-dimensional). For any non-
equilateral triangle (39) gives a two-dimensional plane of masses. This plane
always intersects the positive octant, so every triangle is balanced for some
two-dimensional cone of masses. For example, the isosceles triangle with
(r, s, t) = (r, s, s) is balanced for all mass vectors with m1 = m2 and arbi-
trary m3. On the other hand, the right triangle with (r, s, t) = (3, 4, 5) is
balanced for 183m2 = 392m3 with m1 (the mass at the right angle) arbi-
trary. Since the only non-collinear CC is the equilateral triangle, there are
plenty of triangles which are balanced but not central.

To investigate the possible rigid motions of such triangles we need to work
with configuration matrices X and find the corresponding antisymmetric
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angular velocity matrices, ↵. For the isosceles case in R2 we can take

X =


0 0 x
y �y 0

�

and in Rd we can just add rows of zeros. With masses m1 = m2 = 1 we find
that

XA(X) + SX = 0 S = diag

✓
2 +m3

s3
,

1

4y3
+

m3

s3

◆
s =

p
x2 + y2.

We need a d⇥ d antisymmetric matrix with ↵2 = �S. This is only possible
in R2 when S = �I, that is, only for the equilateral CC case. In the non-
equilateral case with d = 4 the only valid angular velocity matrices are

↵ = diag(�1j,�2j) j =


0 �1
1 0

�
�2
1 =

2 +m3

s3
, �2

2 =
1

4y3
+

m3

s3

The isosceles triangle rotates around its symmetry axis and simultane-
ously around an orthogonal axis with two di↵erent frequencies, the two
planes of rotation being orthogonal. The motion of the mass on the sym-
metry axis is planar and periodic but the other two masses move on a torus
which spans R4. For fixed m3 > 0 one can check that the eigenvalue ratio
�2
2/�

2
1 of S varies over (1+4m3

8+4m3
,1) as the angle at m3 of the isosceles shape

decreases from ⇡

2 to 0.

7. Homographic Motions in Rd

Next we will show that the orbits described in proposition 4 are actually
the most general, non-rigid homographic motions. In particular, only central
configurations give rise to such motions.

Proposition 9. Every non-rigid homographic solution of the n-body problem
in Rd is of the form

X(t)� C(t) = r(t)Q(t)(X0 � C0) Q(t) = exp(✓(t)J)

where X0 is a central configuration with constant �, (r(t), ✓(t)) is a solu-
tion of Kepler problem (16) and J is an antisymmetric d ⇥ d matrix with
J2|C(X0) = �I|C(X0).

Proof. [8] Since the motion is homographic, the right-hand side of (18) is

X(t)A(X(t)) = r(t)�3X(t)A(X0).

The fact that the n ⇥ n matrix A(X0) is M�1-symmetric implies that it is
diagonalizeable. One of the eigenvalues is zero since the mass vector m is
in the kernel and the others are non-positive because of the negative semi-
definiteness of AM . Let S be an invertible n⇥ n matrix with

S�1A(X0)S = diag(��1,��2, . . . ,��
n

).

If W (t) = (X(t)� C(t))S then Newton’s equations give

Ẅ = r(t)�3X(t)A(X0)S = r(t)�3W (t)S�1A(X0)S
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and so the columns w
j

(t) of W (t) satisfy

ẅ
j

(t) = ��
j

w
j

(t)

r(t)3
.

Since the solution is homographic, we have W (t) = r(t)Q(t)W0 where W0 =
(X0 � C0)S. It follows that the columns of W,W0 satisfy

|w
j

(t)| = r(t)|w0j | j = 1, . . . , n.

For each column such that |w0j | 6= 0, define u
j

(t) = w
j

(t)/|w0j |. Then
|u

j

(t)| = r(t) for j = 1, . . . , n and

ü
j

(t) = ��
j

u
j

(t)

|u
j

(t)|3

i.e., the normalized nonzero columns solve Kepler’s equations with constant
�
j

. Moreover, they all have the same norm r(t). It follows that each of
these u

j

(t) moves in a plane and can be represented with respect to polar
coordinates in that plane by functions r(t), ✓(t) satisfying (16) with � = �

j

.

Lemma 2. If r(t), ✓(t) solves (16) and r(t) is not constant, then � and ✓̇(t)
are uniquely determined by r(t).

Proof. Exercise. QED

Continuing with the proof of the proposition, we now see that all of the
�
j

corresponding to nonzero columns of W (t) are equal. Then we have

X0A(X0) = W0 diag(��1, . . . ,��
n

)S�1 = ��W0S
�1 = ��(X0 � C0)

where the second equation holds because changing �
j

to � for a column
w
j

= 0 does no harm. This shows that X0 is a central configuration.
To get the rest we will use the reduced equations of motion (28). Since we

are assuming that X(t) is homographic, the relative state matrices have a
particularly simple form. Let Y (t)=X(t)�C(t)=X(t)P and W (t)=V (t)P
be the centered position and velocity matrices. Then Y (t) = r(t)Q(t)Y0 and
W (t) = ṙ(t)Q(t)Y0 + r(t)Q̇(t)Y0. The relative state matrices are

B(t) = r(t)2B0 C(t) = r(t)ṙ(t)B0 D(t) = ṙ(t)2B0 � r(t)2Y T

0 ⌦(t)2Y0

where ⌦(t) = Q(t)T Q̇(t) 2 so(d). The antisymmetry of this matrix implies
that terms involving Y T

0 ⌦(t)Y0 in the calculation of these matrices vanish.
Now calculating Ċ(t) and comparing with (28) gives

(40) (rr̈ + ṙ2)B0 = D +BA = D � �r2B0

where we used (29).
Now we already found that r(t), ✓(t) are solutions of Kepler’s equation.

By rescaling X0 and choosing the origin of time, we may assume that

r(0) = 1 ṙ(0) = 0.
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The second assumption certainly holds at the perihelion of the Kepler orbit.
At this point the velocities and positions are orthogonal. Evaluating (40) at
t = 0 and using the Kepler equation (16) gives

(41) D0 = ✓̇20 B0.

We also have C0 = 0.
Let Z0 =

⇥
Y0 W0

⇤
be the initial state matrix and consider the matrices

L1 = Z0 L2 =
⇥
✓̇�1
0 W0 �✓̇0Y0

⇤
.

We have

LT

1 L2 =

2

4✓̇
�1
0 C0 �✓̇0B0

✓̇�1
0 D0 �✓̇0C0

3

5 =

2

4 0 �✓̇0B0

✓̇�1
0 D0 0

3

5 .

This 2n ⇥ 2n matrix is antisymmetric by (41) so by Lemma 1, there is an
antisymmetric d⇥ d matrix J such that

W0 = ✓̇0Jy0 Y0 = �✓̇�1
0 W0 = �J2Y0.

By Proposition 4, Ỹ (t) = exp(✓(t)J)Y0 is a homographic solution and its
initial conditions

Ỹ (0) = Y0 W̃ (0) = ✓̇0JY0 = W0

are the same as those of the given homographic solution, Y (t). Therefore
Y (t) = exp(✓(t)J)Y0 as claimed. QED

Although we have made of point of studying the special solutions of the
n-body problem in Rd, we will summarize the results for the physical case
d = 3. The homographic solutions in R3 are of the following types. For
any central configuration and any solution of the one-dimensional Kepler
problem there is a homothetic solution. For any central configuration which
is contained in some two-dimensional subspace and any solution of the two-
dimensional Kepler problem, there is a homographic solution for which the
bodies remain in the same plane. This is a uniform planar rigid motion if
we take the circular solution of the Kepler problem. There are no other
homographic motions. In particular, a non-planar CC does not lead to any
rigid or homographic, non-homothetic solutions. A configuration which is
balanced but not central is not balanced in R3 so does not give rise to a RE
solution in R3.

8. Central Configurations as Critical Points

Now that we have some motivation for studying central configurations,
lots of interesting questions arise. Fixing the masses m

i

we can ask whether
central configurations exist and if so, how many there are up to symmetry.
Working with configuration vectors x 2 Rdn we need to study solutions of
the CC equation

(42) rU(x) + �M(x� c) = 0.



135

If x is a CC then so is any configuration y obtained from x by translations
and rotations. In particular, the centered configuration x�c is also a CC. If
k > 0 then kx is also a central configuration but with a di↵erent �. Recall
that �(x) = U(x)/I(x) where I(x) is the moment of inertia around the
center of mass. So

�(kx) = �(x)/k3.

We will view such CC’s as equivalent and refer to similarity classes of CC’s.
More generally we could study balanced configurations which satisfy

(43) rU(x) + �ŜM(x� c) = 0.

where � > 0 and Ŝ = diag(S, S, . . . , S) is a dn ⇥ dn block-diagonal matrix
with identical d ⇥ d blocks S, the positive semi-definite, symmetric matrix
from Proposition 8. We will call x an S-balanced configuration (SBC) if (43)
holds. CC’s are a special case with S = I. By putting a � into (43) we
can say that x and kx are both S-balanced. The equation is also invariant
under translations but generally not invariant under rotations. In fact the
matrix S transforms under rotations and scalings via

S(kQx) = k�3QSQT .

In the CC case we have S = I and we get rotation invariance. The other ex-
treme would be that S has d distinct eigenvalues and then it is not stabilized
by any rotation. By choosing an appropriate rotation Q we can get

QSQT = diag(�2
1,�

2
2, . . . ,�

2
d

).

It is no loss of generality to assume S is positive definite since it is definite
on C(x) and we could extend it arbitrarily on C(x)?.

Just as in the matrix formulation of the problem, we can view the passage
from x to x� c as an orthogonal projection. In fact

x� c = P̂ x

where P̂ : Rdn ! Rdn is orthogonal projection onto the subspace where
m1x1+ . . .+m

n

x
n

= 0 2 Rd with respect to the mass inner product vTMw.
The matrix of P̂ is

(44) P̂ = I � 1

m0
L̂T L̂M L̂ =

⇥
I I . . . I

⇤

where L is d ⇥ dn with blocks of d ⇥ d identity matrices. One can check
that P̂ is an M -symmetric projection matrix. For convenience we record
these facts and a few other easily verified equations involving the matrices
L̂,M, Ŝ, P̂ :

(45) P̂ TM = MP̂ P̂ 2 = P̂ P̂ Ŝ = ŜP̂ MŜ = ŜM L̂Ŝ = SL̂.

These equations, together with their transposes will be useful for calculations
later on.
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The following proposition gives a characterization of CC’s and SBC’s as
constrained critical points of the potential. The first constraint is to fix the
center of mass at the origin:

c = L̂Mx = 0.

The other constraint is to fix the centered moment of inertia. To handle the
CC and SBC cases together we will define an S-weighted moment of inertia.
Assuming that S is positive definite, we can use it to define a new inner
product and norm on Rd

h⇠, ⌘i
S

= ⇠TS⌘ |⇠|2
S

= ⇠TS⇠.

Then set

I
S

(x) = (x� c)T ŜM(x� c) =
nX

j=1

m
j

|x
j

� c|2
S

.

As in the CC case, the constant � in (43) is � = U(x)/I
S

(x).
Define the S-normalized configuration space

N (S) = {x : c = L̂Mx = 0, I
S

(x) = 1}
Any configuration x determines a unique S-normalized configuration y =
k(x � c), k = |x|�1

S

with I
S

(y) = 1. Note that the center of mass condition
defines a subspace of Rdn of dimension d(n � 1) and then I

S

= 1 gives
an ellipsoid in this subspace. Hence N (S) is a smooth compact manifold
di↵eomorphic to a sphere: N (S) ' S

d(n�1)�1.

Proposition 10. A configuration vector x is S-balanced if and only if the
corresponding normalized configuration is a critical point of the Newtonian
potential U(x) restricted to N (S).

Proof. N (S) is a smooth codimension-one submanifold of the subspace
ker L̂M ⇢ Rdn. Therefore x 2 N (S) is a critical point of U |N (S) if and
only if

(DU(x) + kDI
S

(x)) v = 0

for all v 2 ker L̂M where k 2 R is a Lagrange multiplier. Equivalently we
need

(DU(x) + kDI
S

(x)) P̂ = 0

where P̂ is the orthogonal projection onto ker L̂P from (44). From the
translation invariance U(P̂ x) = U(x) so we have DU(x)P̂ = DU(x) for
x 2 N (S). Similarly DI

S

(x)P̂ = DI
S

(x). So we can drop P̂ from the last
equation and take transposes to get

rU(x) + krI
S

(x) = 0.

Now I
S

(x) = xT P̂ T ŜMP̂x so rI
S

(x) = 2P̂ T ŜMP̂x. But using (45) this
can be simplified to

rI
S

(x) = 2ŜMP̂x = 2ŜM(x� c)

so the condition for a critical point is exactly (43) with � = 2k. QED
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Corollary 1. For every choice of masses m
i

> 0 and every d ⇥ d positive
definite symmetric matrix S, there exists at least one S-balanced configura-
tion x 2 N (S) ⇢ Rdn. In particular, there is always at least one CC.

Proof. N (S) is a compact submanifold of Rdn. The Newtonian potential
defines a smooth function U : N (S) \ � ! R. N (S) \ � is compact and
U(x) ! 1 as x ! �. It follows that U attains a minimum at some point
x 2 N (S) \� and this point will be an S-balanced configuration. Of course
x actually determines a whole similarity class of SBC’s. QED

Although restricting to the compact space N (S) is useful, there are a
couple of alternative variational characterizations of CC’s and SBC’s as un-
constrained critical points. First note that the requirement that the center
of mass be at the origin is not necessary, as shown by the part of the proof
of Proposition 10 where we dropped the projection P̂ . An alternative to
normalizing the moment of inertia is to require that � = 1. For every solu-
tion of (42) or (43), there is a rescaled solution with � = 1. This rescaled
configuration will be a critical point of the function

U(x) + I
S

(x)

on Rdn. Yet another variational approach is to avoid normalization alto-
gether and look for critical points of the homogeneous function

p
I
S

(x)U(x) or I
S

(x)U(x)2.

If x is a solution of (43) we get a ray of critical points kx, k > 0 for these
functions. The proofs of these alternative characterizations will be omitted.

An amusing application of the variational approach is the study of central
configurations of maximal dimension. For any configuration of n-bodies, the
centered position space has dimC(x)  n � 1. We will look for CC’s with
dimC(x) = n� 1.

Proposition 11. The only central configuration of n-bodies with dimC(x) =
n�1 is the regular n-simplex and it is a central configuration for all choices
of the masses.

Proof. Without loss of generality we can consider the n-body problem in
Rn�1. The configuration space is Rn(n�1)\� and the centered configurations
form a subspace of dimension n(n� 1)� (n� 1) = (n� 1)2. The subset of
configurations with dimC(x) = n�1 is an open subset. The rotation group
SO(n� 1) acts freely on this open set and we can look for critical points on
the quotient space which will be a smooth manifold of dimension

(n� 1)2 � (n� 1)(n� 2)

2
=

n(n� 1)

2
.

The dimension suggests using the mutual distances r
ij

, 1  i < j  n as local
coordinates. We will look for unconstrained critical points of U(x) + I(x)



138

where we express both terms as functions of the r
ij

using (2) and (9). We
get

@U

@r
ij

+
@I

@r
ij

= �m
i

m
j

r2
ij

+
2m

i

m
j

r
ij

m0
= 0.

The masses cancel out and the mutual distances are equal: r3
ij

= m0/2. QED

The variational characterization suggests using the gradient flow of the
Newtonian potential to understand central or balanced configurations. A
generic smooth function on a smooth manifold is a Morse function, i..e., it
has isolated critical points which are non-degenerate. Due to the rotational
symmetry, critical points of U |N will never be isolated. There are various
approaches to eliminating the rotational symmetry, some of which will be
described below. However, one point of view is to just work with the sim-
ilarity classes of critical points. We can still hope for these classes to be
isolated from one another or non-degenerate in some sense.

First we deal with another problematic aspect of the gradient flow, the
lack of compactness. The manifold N (S) is compact, but the flow is only
defined on the open subset N (S) \ �. The next result, known as Shub’s
lemma [40], shows that CC’s and SBC’s are bounded away from �.

Proposition 12. For fixed masses m1, . . . ,mn

and a fixed positive definite
symmetric matrix S, there is a neighborhood of � in N (S) which contains
no S-balanced configurations.

Proof. Otherwise there would be some x̄ 2 N (S) \ � and a sequence of
SBC’s xk 2 N (S) with xk ! x̄ as k ! 1. The collision configuration x̄
defines a partition of the bodies into clusters, where m

i

,m
j

are in the same
cluster if x̄

i

= x̄
j

. For k large, the bodies in each cluster will be close to
each other but the clusters will be bounded away from one another.

Let F
i

(xk) = r
i

U(xk) be the force on the i-th body. Since xk is a nor-
malized SBC we have

F
i

= ��
k

m
i

Sxk
i

�
k

= U(xk).

Let � ⇢ {1, . . . , n} be the set of subscripts of one of the the clusters. Then
X

i2�
F
i

= ��
k

S
X

i2�
m

i

xk
i

! ��
k

Sm
�

x̄
�

as k ! 1 where m
�

is the total mass of the cluster and x̄
�

is the common
value of the limiting positions x̄

i

, i 2 �. On the other hand, we can split this
sum as X

i2�
F
i

=
X

i,j2�
i 6=j

F
ij

+
X

i2�
l/2�

F
il

where F
ij

= mimj(xj�xi)
r

3
ij

is the force on body i due to body j. The first sum

is identically zero and the second is bounded by definition of cluster.
Now �

k

= U(xk) ! 1 as k ! 1. Comparing the two formulas and using
the fact that S is nonsingular we find that x̄

�

= 0 2 Rd. Since this holds
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for every cluster, there could only be one cluster and its limiting position
would be at the origin. But this contradicts the normalization condition
I
S

(x̄) = 1. QED

It follows from Shub’s lemma that if the similarity classes of CC’s or SBC’s
are isolated then there are only finitely many of them. To see this, let U
denote a neighborhood of � in N (S) which contains no SBC’s. Since the
complementN (S)\U is compact, a hypothetical infinite sequence of distinct,
similarity classes would have normalized representatives with a convergent
subsequence. The limiting configuration would be a non-isolated SBC.

If we allow the masses to vary, it is possible to find a sequence of CC’s
x̄
k

converging to �. This idea was introduced by Xia in [46] and developed
in [28]. The masses in each nontrivial cluster all tend to zero. The limiting
shapes of the clusters are governed by equations similar to the CC equation.

It is interesting to classify CC’s and SBC’s by their Morse index. Recall
that if x is a critical point of a smooth function V on a manifold N , there is
a Hessian quadratic form on the tangent space T

x

N which is given in local
coordinates by the symmetric matrix of second partial derivatives:

H(x)(v) = vTD2V (x)v.

Alternatively, if �(t) is any smooth curve in N with �(0) = x and �0(0) = v
then

H(x)(v) =
1

2

d2

dt2
V (�(t))|

t=0.

The Morse index ind(x) is the maximum dimension of a subspace of T
x

N
on which H(x) is negative-definite. The nullity is the dimension of

kerH(x) = {v : H(q)(v, w) = 0 for all w 2 T
x

N}

where H(x)(v, w) = vTD2V (x)w is the symmetric bilinear form associated
to H(x). We are interested in the function V = U |N (S) given by restricting
the Newtonian potential to the normalized configuration space.

Instead of working in local coordinates, we want to represent the Hessian
by a dn ⇥ dn matrix, also called H(x), whose restriction to T

x

N (S) gives
the correct values.

Proposition 13. The Hessian of V : N (S) ! R at a critical point x is
given by H(x)(v) = vTH(x)v where H(x) is the dn⇥ dn matrix

(46) H(x) = D2U(x) + U(x)ŜM.

Proof. A critical point of V is also an unconstrained critical point of G(x) =p
I
S

(x)U(x) in Rdn. Since G|N (S) = U |N (S), their Hessians on T
x

N (S)
agree.

To calculate D2G first recall that I
S

(x) = xT P̂ T ŜMP̂x. Using (45) we
find for any vector w 2 Rdn,

DI
S

(x)w = 2xT P̂ T ŜMP̂w.
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Hence

DG(x)w = I
S

(x)
1
2 DU(x)w + I

S

(x)�
1
2U(x)xT P̂ T ŜMP̂w.

We are only interested in computing vectors D2G(x)(v, w) where v, w 2
T
x

N (S). In that case we have

I
S

(x) = 1 P̂ v = v xT P̂ T ŜMP̂v = 0

and analogous equations for w. Di↵erentiating G again and using these
equations gives

D2G(x)(v, w) = D2U(x)(v, w) + U(x)vT ŜMw

as claimed. QED

It is straightforward to calculate the dn ⇥ dn matrix D2U(x) with the
result

(47) D2U(x) =

2

64
D11 D12 . . . D1n

D21 D12 . . . D2n
...

...

3

75

where the d⇥ d blocks are

D
ij

=
m

i

m
j

r3
ij

�
I � 3u

ij

uT
ij

�
, u

ij

=
x
i

� x
j

r
ij

for i 6= j

and

D
ii

= �
X

j 6=i

D
ij

.

Due to the rotational symmetry, CC’s are always degenerate as critical
points. The following result describes the minimal degeneracy.

Proposition 14. Let x 2 N (S) be a CC or SBC in Rd. Then the nullity
of x as a critical point U |N (S) satisfies

(48) null(x) � d(d� 1)

2
� k(k � 1)

2
k = d� dim (x) = d� dim C(x).

Proof. The formula just gives the dimension of the subspace of T
x

N consist-
ing of tangent vectors to the action of the rotation group, i.e., the subspace

{v = ↵x : ↵ 2 so(d)}.

To see this, first note that the manifold N (S) is rotation invariant. For any
curve of rotations Q(t) 2 SO(d) with Q(0) = I the vector

Q̇(t)x|
t=0 = ↵x 2 T

x

N (S).

But x is stabilized by rotations which fix the subspace C(S). This stabilizer
is isomorphic to the rotation group of the orthogonal complement C(S)?
which has dimension k. QED
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For SBC’s the corresponding minimal nullity will depend on how the
rotation group acts on the symmetric matrix S. If S has distinct eigenvalues,
it is possible for SBC’s to be non-degenerate. For example, recall that for
masses m1 = m2 = 1 and m3 > 0 any isosceles triangle is balanced with the
eigenvalues of S varying with the shape. One can check using computer a
algebra system that generic choices of isosceles shape lead to non-degenerate
SBC’s.

In all cases, it is natural to call a critical point non-degenerate if it’s
nullity is as small as possible given the rotational symmetry.

Definition 5. A CC or SBC in Rd is non-degenerate if the nullity of the
corresponding critical point is as small as possible consistent with the rota-
tional symmetry. For CC’s this means that equality should hold in (48).

For example in R3 a non-degenerate collinear CC has nullity 2, while
non-degenerate planar and spatial CC’s have nullity 3.

9. Collinear Central Configurations

The first central configurations were discover by Euler in 1767 [12]. He
studied the collinear three-body problem where he found collinear central
configurations and the corresponding homothetic motions. Moulton inves-
tigated the central configurations of the collinear n-body problem in 1910
[31]. The results are definitive in contrast to the state of the theory for
d � 2. This section is devoted to proving Moulton’s theorem:

Proposition 15. Given masses m
i

> 0, there is a unique normalized
collinear central configuration for each ordering of the masses along the line.

Note that when d = 1 there is no di↵erence between CC’s and SBC’s due
to the lack of variety in 1⇥ 1 symmetric matrices.

It is instructive to start with Euler’s case n = 3. The normalized config-
uration space

N = {x 2 R3 : m1x1 +m2x2 +m3x3 = 0,m1x
2
1 +m2x

2
2 +m3x

2
3 = m0}

is the curve of intersection of a plane and an ellipsoid. The collision set
consist of three planes:

� = {x1 = x2} [ {x1 = x3} [ {x2 = x3}

which divide the curve into 6 arcs corresponding to the di↵erent orderings
of the three masses along the line (see figure 3). Since U ! 1 at these
points, there must be at least one critical point in each of the arcs. To see
that there is only one requires more work.

The three mutual distances provide convenient coordinates, but we need
to subject them to a collinearity constraint. If we fix the ordering of the
bodies to be x1 < x2 < x3 then the constraint is r12+r23�r13 = 0. Looking
for critical points of the homogeneous function F = U(r

ij

)2I(r
ij

) with this
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constraint and then normalizing by setting r12 = r, r13 = 1, r23 = 1� r gives
a fifth-degree polynomial equation for r:

(49)
(m2 +m3)r

5 + (2m2 + 3m3)r
4 + (m2 + 3m3)r

3

� (3m1 +m2)r
2 � (3m1 + 2m2)r � (m1 +m2) = 0.

Fortunately there is a single sign changes so Descartes’ rule of signs implies
there is a unique positive real root. Of course there is no simple formula
for how this root changes as a function of the masses. Euler’s example is a
shot over the bow about the CC equation. Even in the simplest nontrivial
case, finding CC’s for given masses involves solving complicated polynomial
equations. Figure 2 shows a surface defined by Euler’s quintic when one of
the masses is normalized to 1. The surface lies over the mass plane in a
complicated way making the uniqueness result for fixed positive masses all
the more remarkable.

Figure 2. Surface defined by Euler’s quintic equations in
the product space of masses and configurations. Two mass
parameters (horizontal) and one configuration variable r
(vertical). Fixing the masses means looking for intersections
of the surface with a vertical fiber, here a line segment. For
positive masses, the segment cuts the surface just once.

Before moving on to the proof of Moulton’s theorem we will have a look
at the geometry of the next case, n = 4. This time N is the intersection
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123

213

132

231

312

321

Figure 3. N for the collinear three-body problem is the
boundary circle of the shaded disk which represents the set
I  1 in the plane of centered configurations. � intersects
this plane in three lines which divide the circle into six arcs,
one for each ordering of the bodies along the line.

of a hyperplane and an ellipsoid in R4. So it is a two-dimensional surface
di↵eomorphic to S

2. There are six collision planes which divide the sphere
into 4! = 24 triangles. Figure 4 shows the how the collision planes divide
the sphere.

Proof of Moulton’s theorem. The collision set � divides the ellipsoid N of
normalized centered configurations into n! components, one for each ordering
of the bodies along the line. Let V denote any one of these components. V
is an open set whose boundary is contained in �. The Newtonian potential
gives a smooth function U |V : V ! R and U(x) ! 1 as x ! @V. Hence U |V
attains its minimum at some x0 2 V and x0 is a CC with the given ordering
of the bodies along the line.

Instead of working on the normalized space where I(x) = 1 we can study
the function F (x) = U(x)+I(x) on the cone Ṽ of all rays through the origin
passing through V (in figure 3 this would be an infinite triangular wedge
based on one of the six arcs). Let x, y 2 Ṽ and consider a line segment
p(t) = (1� t)x+ ty, 0  t  1. Note that since the ordering is fixed, the sign
of p

i

(t) � p
j

(t) = (1 � t)(x
i

� x
j

) + t(y
i

� y
j

) is equal to the common sign
of x

i

� x
j

and y
i

� y
j

. It follows that p(t) 2 Ṽ for all t and so Ṽ is a convex
set. We will show that if x 6= y then F (p(t)) has a strictly positive second
derivative. It follows that x, y cannot both be critical points of F (x).
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Figure 4. N for the collinear four-body problem. The col-
lision planes divide the sphere into triangles representing the
possible orderings of the bodies.

First consider F (r
ij

) as a function of the mutual distances r
ij

on

(R+)
n(n�1)

2 . We have

@2F

@r2
ij

=
2m

i

m
j

r3
ij

+ 2m
i

m
j

> 0.

Now since the configurations x, y are collinear, the mutual distances reduce
to r

ij

(t) = |p
i

(t)� p
j

(t)| and as the ordering is constant along the segment,
this is a linear function of t. It follows that F (p(t))00 is a sum of terms

@2F

@r2
ij

(p(t))
�
r0
ij

(t)
�2

.

These terms are all non-negative and at least one is positive if x 6= y. QED

Next we will take a look at the Hessian H(x) of a collinear CC. Using the
rotation invariance of U we get

H(Qx) = QTH(x)Q
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where H(x) is given by (46) and Q 2 SO(d) is any rotation. It follows that
the index and nullity are unchanged by such rotations. If x is collinear,
we can therefore assume that all of the bodies have positions x

j

2 R1 ⇥
0d�1 ⇢ Rd. Then the unit vectors u

ij

appearing in the formula (47) are all
multiples of e1 = (1, 0, . . . , 0). It follows that if we permute the components
of configuration vectors into groups of n with all of the e1 components first,
the e2 components next, etc., then D2U(x) will have a block-diagonal form

D2U(x) = diag(�2Ã, Ã, . . . , Ã)

where

Ã =

2

6666664

Ã11
m1m2
r

3
12

· · · m1mn

r

3
1n

m1m2
r

3
12

Ã22 · · · m2mn

r

3
2n

...
...

m1mn

r

3
1n

m2mn

r

3
2n

· · · Ã
nn

3

7777775
Ã

jj

= �
X

i 6=j

Ã
ij

= �
X

i 6=j

m
i

r3
ij

.

Note that Ã is just the symmetric matrix A(X)M from section 4.
Let v = (⇠1, ⇠2, . . . , ⇠

d

)T denote a vector in Rdn with its coordinates
permuted into groups of n as described above. Vectors of the form v =
(⇠1, 0, . . . , 0)T will be called collinear vectors and those of the form v =
(0, ⇠2, . . . , ⇠n)T normal vectors. We are interested in the tangent space T

x

N
to the normalized configuration space. With these coordinates the center of
mass subspace, ker L̂M is given by

m · ⇠
i

= 0 i = 1, . . . , d

wherem 2 Rn is the mass vector. Since x is collinear, the equationDI(x)v =
0 a↵ects only the first vector ⇠1:

m1x11⇠11 + . . .+m
n

x
n1⇠1n = 0.

Finally, the action of the rotation group leads to a d�1-dimensional subspace
of vectors in the kernel of the Hessian. A basis is given by !2(x), . . . ,!

d

(x)
where !

i

(x) is the vector whose i-th group of n coordinates is the vector
of first coordinates of the configuration: (x11, x21, . . . , xn1). For example,
!2(x) is the tangent vector at x in the direction of a rotation in the (1, 2)-
coordinate plane.

Proposition 16. Every collinear central configuration in Rd is non-
degenerate with null(x) = d� 1 and ind(x) = (d� 1)(n� 2). In the collinear
tangent directions, H(x) is positive definite while in the normal directions
it is negative semi-definite.

Proof. We will analyze the Hessian block-by-block. The first block of the
Hessian corresponds to the collinear directions and we have

⇠TH(x)⇠ = �2⇠T Ã⇠ + U(x)⇠TM⇠
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whereM is the n⇥n version of the mass matrix. We showed in section 4 that
the matrix Ã = AM is negative semi-definite, so both terms here are non-
negative and the second is strictly positive for nonzero vectors. Therefore
the collinear part of the Hessian is positive definite.

For each of the other blocks we have

⇠TH(x)⇠ = ⇠T Ã⇠ + U(x)⇠TM⇠.

The terms are of di↵erent signs and it is a subtle problem to see which is
dominant. The following proof, due to Conley, appears in [34].

Instead of finding the index and nullity of H(x) we will find the number
of negative and zero eigenvalues of the linear map with matrix

M�1H(x) = M�1Ã+ U(X)I.

It is possible to guess two eigenvalues and eigenvectors. Let u1=
⇥
1 . . . 1

⇤
T

.

Since the row sums of Ã are zero we have

M�1Hu1 = �1u1 �1 = U(x) > 0.

However, this vector is orthogonal to the zero center of mass subspace so is
not relevant for our index and nullity computation. Next we have u2 = x =⇥
x1 . . . x

n

⇤
T

, where we have simplified the notation so x
i

2 R denotes the
position of the i-th body along the line. Then a short computation gives

M�1Ãu2 = M�1rU(x)

where r is the gradient in Rn. Since x is a normalized CC we have
M�1rU(x) = �U(x)x = �U(x)u2 and so

M�1Hu2 = (M�1Ã+ U(x)I)u2 = �U(x)u2 + U(x)u2 = 0.

In other words u2 is an eigenvector with eigenvalue �2 = 0. We have one
such null vector for each of the last d� 1 blocks. Note that u2 is the vector
!
i

(x) tangent to the rotation group action. If we can show that the other
n � 2 eigenvalues of M�1H are strictly negative, the proposition will be
proved.

Conley’s proof uses the dynamics of the linear flow of the di↵erential
equation

⇠̇ = M�1Ã⇠.

Every linear flow determines a flow on the space of lines through the origin
and the eigenvector lines are exactly the equilibrium points. Moreover the
equilibrium corresponding to the largest eigenvector is an attractor for this
projectivized flow. If we can show that the line of the eigenvector u2 = x is
an attractor, then it follows that all of the other eigenvalues of M�1Ã are
strictly less than �U(x) and so all of the other eigenvalues of M�1H(x) are
negative.

Suppose that the ordering of the bodies along the line is x1 < x2 < . . . <
x
n

. Define a cone in the zero center of mass subspace by

K = {⇠ : m · ⇠ = 0, ⇠1  ⇠2  . . .  ⇠
n

}.
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This cone contains the line spanned by the eigenvector u2 in its interior and
does not contain any two-dimensional subspaces. We will show that the flow
carries K strictly inside itself. It follows that for the projectivized flow, u2
is an attractor.

Now the boundary of K is the set where one or more of the inequalities
in the definition is an equality. Consider a boundary point where for some
i < j we have

u
i�1  u

i

= . . . = u
j

 u
j+1.

The di↵erential equation gives

u̇
i

=
X

k 6=i

m
k

r3
ik

(u
k

� u
i

) u̇
j

=
X

k 6=j

m
k

r3
jk

(u
k

� u
j

).

Since u
i

= u
j

the di↵erence of these can be written:

u̇
j

� u̇
i

=
X

k 6=i,j

m
k

(u
k

� u
i

)

"
1

r3
jk

� 1

r3
ik

#
.

Every term in this sum is non-negative:

If k < i u
k

� u
i

 0
1

r3
jk

� 1

r3
ik

< 0

If i < k < j u
k

� u
i

= 0

If j < k u
k

� u
i

� 0
1

r3
jk

� 1

r3
ik

> 0.

Moreover, not all of the terms can vanish since otherwise u would be a

multiple of
⇥
1 . . . 1

⇤
T

which is not in the zero center of mass space. It
follows that at this boundary point u̇

j

� u̇
i

> 0 so the point moves strictly
inside the cone under the linear flow. It follows that the line determined by
u2 is an attractor as required. QED

10. Morse Indices of Non-Collinear Central Configurations

Unfortunately, not much is known about the Morse indices of non-collinear
CC’s. Here we will just get a few weak estimates.

Proposition 17. Suppose x is a central configuration of the n-body problem
in Rd with dim (x) < min(d, n�1). Then the Morse index of the correspond-
ing critical point satisfies ind(x) � d � dim (x). In particular, the critical
point is not a local minimum of U |N .

As a corollary we get the existence of CC’s of the n-body problem of all
possible dimensions.

Corollary 2. For the n-body problem in Rd and for any k with 1  k 
min(d, n�1) there exists at least one central configuration with dim (x) = k.
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Proof. We have seen that U |N achieves a minimum at some CC x and it
follows from the proposition that dim (x) = min(d, n � 1). If 1  k <
min(d, n � 1) then we can restrict to a subspace of Rd of dimension k and
get a CC of dimension min(k, n� 1) = k, QED

Proof of the proposition. If dim (x) = k < min(d, n � 1) we can assume
that all of the bodies have position vectors x

j

2 W = Rk ⇥ 0d�k. As in
the last section we get a block decomposition of the Hessian D2U(x) =
diag(D2(U |W), Ã, . . . , Ã) where D2(U |W) is nk ⇥ nk tangential part and
where there are d � k copies of the familiar n ⇥ n block Ã. We will show
that the matrix M�1Ã+ U(x)I has at least one negative eigenvalue whose
eigenvector has zero center of mass. Since the eigenvalue in the u1-direction
normal to the center of mass is �1 = U(x), it su�ces to show that tr(M�1Ã+
U(x)I) < �U(x) or equivalently

⌧ = � trM�1Ã > (n� 1)U(x).

Now

⌧ =
X

i

X

j 6=i

m
j

r3
ij

=
X

(i,j)
i<j

m
i

+m
j

r3
ij

.

The problem, of course, is that we do not have much control over the mutual
distances. All we know is that we are at some CC. The following approach
is due to Albouy [2].

We will use the reduced version of the CC equation (29). Viewing B as
a bilinear form on the hyperplane D⇤ we can use the matrix representative
B̂ from (27). For each pair of indices i < j, the vector e

i

� e
j

2 D⇤ where
e
i

, e
j

are standard basis vectors in Rn. From (29) we have

(e
i

� e
j

)T (B̂A+ �B̂)(e
i

� e
j

) = 0 i < j.

We have (e
i

� e
j

)T B̂(e
i

� e
j

) = r2
ij

. The other term is more complicated but
with some e↵ort we arrive at

2� =
2(m

i

+m
j

)

r3
ij

+
X

k 6=i,j

m
k

 
1

r3
ik

+
1

r3
jk

!
+
X

k 6=i,j

m
k

(r2
ik

�r2
jk

)

 
1

r3
ik

� 1

r3
jk

!
.

Note that the two parentheses in the last sum always have opposite signs
unless they are both zero. So the sum is strictly negative unless all of the
mutual distances are equal. However, this would mean that the configuration
was the regular simplex with dim (x) = n�1. By hypothesis, this is not the
case, so we can drop the last sum to get a strict inequality. Summing this
inequality over all pairs i < j gives

n(n� 1)� < n⌧.

Since x is a normalized CC we have � = U(x) and this is exactly the
inequality we need. QED
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Upper bounds on the index are also of interest. In dimension d = 2,
Palmore showed that the collinear CC’s have the maximum possible index,
namely n� 2. For d = 3 it is known, at least, that U |N does not have any
local maxima. See [26, 29] for these results. I don’t know if this is still true
for d > 3.

11. Morse Theory for CC’s and SBC’s

In this section we will describe how to use Morse theory to prove existence
of CC’s. This approach was developed by Palmore [35] for the planar n-body
problem and extended to three dimensions using equivariant Morse theory
by Pacella [34]. An alternative approach to the three-dimensional case is
due to Merkel [24].

Recall that central configurations in Rd, d � 2, correspond to degenerate
critical point of U |N due to the action of the symmetry group SO(d). In the
planar case, SO(2) ' S

1 acts freely on N \ � and we can think of U as a
smooth function on the quotient manifold

M = (N \�)/ SO(2).

We can still define such a quotient space when d > 2 but due to the non-
free action of SO(d), it will not be a manifold. In section 8, we defined the
concept of non-degeneracy for CC’s with the symmetry group in mind, so
using this terminology, a non-degenerate CC of the planar n-body problem
determines a non-degenerate critical point in the manifold M.

A generic smooth function on a manifold is aMorse function, that is, all of
its critical points are non-degenerate. But it is di�cult to actually verify this
for particular functions like the Newtonian potential. From proposition 16
we know that the collinear CC’s are non-degenerate.

When n = 3 the only non-collinear CC’s are the equilateral triangles and
these are non-degenerate. The same hold for the regular simplex in the
n-body problem.

Proposition 18. For every choice of n positive masses, the regular simplex
is a non-degenerate central configuration. It is a non-degenerate minimum
of the potential in the quotient space M.

Proof. Suppose d = n � 1 and forget about the normalization temporarily.
SO(d) acts freely on the open subset of Rn(n�1) \ � consisting of configu-
rations with dim (x) = n � 1 and we can use the mutual distances r

ij

as
local coordinates in the corresponding open subset of the quotient space un-
der rotations and translations. In these coordinates, the matrix of second
derivatives of F = IU2 is diagonal and the partial derivatives @2F/@r2

ij

are
all positive. Restricting to the tangent space to the normalized configura-
tions gives a strictly positive Hessian. QED

It follows that for the planar three-body problem and for all choices of
the three masses, the Newtonian potential determines a Morse function on
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M. The space of normalized triangles is a three-dimensional ellipsoid. The
quotient space under the rotation group is di↵eomorphic to S

2 and is called
the shape sphere since it represents all possible shapes of triangles in the
plane up to translation, rotation and scaling. M is the shape sphere with
three collision shapes deleted. Figure 5 shows the level curves of the potential
for two choices of the masses. The poles represent the equilateral triangles
which are minima. On the equator, which represents the collinear shapes,
there are the three collinear central configurations found by Euler, which
are saddle points.

Figure 5. M for the planar three-body problem is the shape
sphere. The Newtonian potential determines a Morse func-
tion with five critical points, shown here for the case of equal
masses (left) and masses 1, 2, 10 (right).

For n > 3, d � 2 it is much harder to check whether the critical points
are non-degenerate. For the planar four-body problem Palmore showed that
degenerate central configurations can occur for some choices of the masses
and this is related to bifurcations in the number of central configurations as
the masses are varied. Simo investigated the bifurcations numerically [41].
In section 14 we will show that for generic choices of the masses in the planar
four-body problem the potential determines a Morse function.

Now we will see what Morse theory tells us about the number of central
configurations in the plane, taking the non-degeneracy of the critical points
as an assumption. Morse theory is based on the gradient flow induced by a
function on a Riemannian manifold. In our case the manifold is the quotient
manifold M where we can use the restriction of the mass inner product as
the Riemannian metric. First consider the gradient flow on N \ �. If the
masses are fixed, Shub’s lemma allows us to restrict to a compact set of
the form K = {x 2 N : U(x)  U0} for some su�ciently large U0. By
definition, the gradient vectorfield of U |N with respect to an inner product
is the unique tangent vectorfield r̃U(x) with the property that

hr̃U(x),W i = DU(x)W W 2 T
x

N .
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Using the mass inner product h⇠, ⌘i = ⇠TM⌘, one can check that the gradient
vectorfield is the restriction to N of

r̃U(x) = M�1rU(x) + U(x)x.

By rotation invariance, this vectorfield determines a gradient flow on the
quotient space M. Orbits of the gradient flow cross the level sets of U
orthogonally in the direction of increasing U . Orbits starting in the compact
set K will continue to exist at least until they reach the exit level U = U0.

The Morse inequalities relate the indices of the critical points of a Morse
function on a manifold M to the topology of the manifold. They are most
easily expressed in terms of polynomial generating functions. Define a Morse
polynomial

M(t) =
X

k

�
k

tk �
k

= number of critical points of index k

and the Poincaré polynomial

P (t) =
X

k

�
k

tk �
k

= k-th Betti number of the manifold.

By the Betti numbers, we mean the ranks of the homology groups H
k

(M,R)
with real (or rational) coe�cients. Then the Morse inequalities can be writ-
ten

(50) M(t) = P (t) + (1 + t)R(t)

where R(t) is some polynomial with non-negative integer coe�cients. In
particular, the Betti number �

k

is a lower bound on the number of critical
points of index k.

It turns out the the manifold M has a complicated topology so the Morse
inequalities give interesting results. Recall that for the n-body problem in
Rd, the space N of normalized configurations is an ellipsoid of dimension
d(n�1)�1. It is the deletion of collision set� which produces the topological
complexity.

Proposition 19. For the n-body problem in Rd, the Poincaré polynomial
of N \� is

P̃ (t) = (1 + td�1)(1 + 2td�1) . . . (1 + (n� 1)td�1).

For example in the planar three-body problem we have

P̃ (t) = (1 + t)(1 + 2t) = 1 + 3t+ 2t2.

Proof. It su�ces to find the Betti number of the unnormalized space Rdn\�.
To see this note that the normalization of the center of mass and moment
of inertia give a di↵eomorphism

Rdn \� ' Rd ⇥ R+ ⇥ (N \�).

Now Künneth’s theorem from algebraic topology show that the Poincaré
polynomial of a product space is the product of the Poincaré polynomials of
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the factors. Here the first two factors are homologically trivial with Poincaré
polynomials equal to 1.

The computation for Rdn \� is by induction on n. For n = 1 we have

Rd \� = Rd \ {0} ' R+ ⇥ S

d�1

and we have the Poincaré polynomial of a sphere, P̃ (t) = (1 + td�1). For
n > 1 we have a fiber bundle ⇡ : Rdn \� ! Rd(n�1) \� where the projection
just forgets the n-th body:

⇡(x1, . . . , xn) = (x1, . . . , xn�1).

The fiber over a point (x1, . . . , xn�1) is just Rd \ {n� 1 points}. Now this
fiber bundle is not a product but it does satisfy certain topological conditions
which guarantee that the Poincaré polynomials multiply. First, there is a
cross-section map � : : Rd(n�1) \� ! Rdn \� with ⇡ � � = id. For example
we could let the n-th body of �(x1, . . . , xn�1) be at the point obtained
by translating the barycenter of the other n � 1 bodies a distance greater
than the maximum distance between these bodies in the direction of the
first coordinate axis.. In addition, the fundamental group of the base acts
trivially on the fiber (for d 6= 2 the base is simply connected). In any case
we find that we go from the Poincaré polynomial for (n � 1) bodies to the
polynomial for n bodies by multiplying by the Poincaré polynomial of the
fiber, namely 1 + (n� 1)td�1. QED

Next we restrict attention to the planar problem and pass to the quotient
spaceM under the S1 action. The image of the normalized spaceN ' S

2n�3

is the di↵eomorphic to the complex projective space CP(n � 2) and the
projection is a nontrivial circle bundle. But when we delete the collision set,
the bundle becomes trivial. For example, there is a global cross-section to
the circle action consisting of all non-collision configuration where the vector
from x1 to x2 is the direction of the positive first-coordinate axis. It follows
that in the planar case

N \� ' S

1⇥M.

Proposition 20. For the n-body problem in R2, the Poincaré polynomial
of the rotation-reduced, normalized configuration space is

P (t) = (1 + 2t) . . . (1 + (n� 1)t).

Proof. Since N \� is product of a circle and M, we have P̃ (t) = (1+t)P (t).
Then proposition 19 with d = 2 gives the result. QED

For example when n = 3, 4 we have, respectively,

P (t) = 1 + 2t P (t) = (1 + 2t)(1 + 3t) = 1 + 5t+ 6t2.

For n = 3, the Betti numbers �0 = 1 and �1 = 2 describe the homology of the
shape sphere with the three collision points deleted which is di↵eomorphic
to the twice-punctured plane.
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To apply the Morse inequalities to the planar n-body problem first note
that we have, after quotienting by rotations, n!

2 collinear central configura-
tions. By proposition 16, these have Morse index n � 2. The next result,
due to Palmore, uses this information to good e↵ect.

Proposition 21. Suppose that all of the central configurations are non-
degenerate for a certain choice of masses in the planar n-body problem. Then
there are at least

(3n� 4)(n� 1)!

2
central configurations, of which at least

(2n� 4)(n� 1)!

2
are non-collinear.

Proof. The simplest lower bound on the number of critical points is obtained
by setting t = 1 in (50):

X

k

�
k

�
X

k

�
k

= P (1) =
n!

2
.

But the information about the collinear configurations mentioned above
shows that in the Morse polynomial, we have �

n�2 � n!
2 . On the other

hand, the coe�cient of tn�2 in the Poincaré polynomial P (t) is �
n�2 =

2 · 3 . . . (n� 1) = (n� 1)!.
Let R(t) =

P
k

r
k

tk be the residual polynomial in the Morse inequalities
(50). Then we have

r
n�2 + r

n�3 �
n!

2
� (n� 1)!.

Setting t = 1 in (50) now gives
X

k

�
k

� n!

2
+ 2(r

n�2 + r
n�3) �

3n!

2
� 2(n� 1)! =

(3n� 4)(n� 1)!

2
.

Subtracting n!/2 gives the non-collinear estimate. QED

For example, when n = 3 the Morse estimate is 5 critical points, which is
exactly right. For n = 4 we have at least 24 CC’s of including the 12 collinear
ones, assuming non-degeneracy. The estimates increase rapidly with n – we
expect there to be many CC’s.

In the non-planar case, the reduction of symmetry is more complicated
and the quotient space is not a manifold. See [34, 24] for two approaches
to the spatial case. We also mention the paper of McCord [23] which gives
estimates based on Lyusternik-Schnirelmann theory instead of Morse theory.

Instead of pursuing this, we will just make a few remarks about what
Morse theory can tell us about balanced configurations. Recall that these
also admit a variational characterization as critical points of U |N (S) where
N (S) is the space of normalized configurations with respect to the metric
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based on the symmetric matrix S: h⇠, ⌘i = ⇠T ŜM⌘. Now if we fix a sym-
metric matrix S with distinct eigenvalues, there is no longer any rotational
symmetry and we can have non-degenerate critical points in N (S) \�. The
topology of this space is independent of S, so we can use the Poincaré poly-
nomial P̃ (t) from proposition 19.

This time there are more collinear configurations. If we fix any one of the
d eigenlines of S we will find n! collinear SBC’s which are non-degenerate
with Morse index (d � 1)(n � 1). There are d eigenlines for a total of dn!
collinear SBC’s. If we knew their indices, it might be possible to use the
information to get strong Morse estimates for the number of non-collinear
SBC’s. It seems that the proof of proposition 16 can be generalized to show
that the collinear SBC’s corresponding to the largest eigenvalue of S have
index (d�1)(n�1) which would give �(d�1)(n�1) � n!. Using this to estimate
the residual polynomial as in the proof of proposition 21 gives a lower bound

X

k

�
k

� (3n� 1)(n� 1)!

but this exceeds the known count of dn! collinear configurations only for
d = 2.

12. Dziobek Configurations

In section 9 we studied collinear central configurations. These are at the
lower end of the dimension range for an n-body configuration: 1  dim (x) 
n � 1. We also saw that the only CC with dim (x) = n � 1 is the regular
simplex. In this section we consider the highest nontrivial dimension.

Definition 6. A Dziobek configuration is a configuration of n bodies with
dim (x) = n� 2.

The physically interesting examples are collinear configurations of 3 bod-
ies, planar but noncollinear configurations of 4 bodies and spatial but non-
planar configurations of 5 bodies. They are named after Otto Dziobek who
studied the planar 4 body case [11]. We will be interested in finding Dziobek
central configurations (DCC’s).

We begin by studying the geometry of Dziobek configurations. We will
assume that the dimension of the ambient space is d = n� 2 so any n-body
configuration is given by x = (x1, . . . , xn) with x

j

2 Rn�2. It is useful to
associate with x an (n� 1)⇥ n augmented configuration matrix:

(51) X̂ =

2

664

1 · · · 1

x1 · · · x
n

3

775 .

This is just the configuration matrix of section 4 with a row of ones added
to the top. Then it is easy to see that

dim (x) = rank X̂ � 1.
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Note that because of the row of ones, two configurations are translation
equivalent if and only if their augmented configuration matrices have the
same row space or, equivalently, the same kernel.

For a Dziobek configuration we have rank X̂ = n� 1 and dim ker X̂ = 1.
Hence there is a nonzero vector � = (�1, . . . ,�n

), unique up to a constant
multiple, such that

(52)
�1 + · · ·+�

n

= 0

x1�1 + · · ·+ x
n

�
n

= 0.

There is a nice formula for a vector � satisfying (52). Let X̂
k

be the (n �
1) ⇥ (n � 1) matrix obtained from X by deleting the k-th column and let
|X̂

k

| denote its determinant. Then

(53) � = (|X̂1|,�|X̂2|, . . . , (�1)k+1|X̂
k

|, . . .)T

is a solution to (52). Moreover, since the determinants are proportional to
the volumes of the (n � 2)-simplices of the deleted configurations, at least
one of them is nonzero in the Dziobek case.

Next we will reformulate the dimension criteria above in terms of the
mutual distances r

ij

or rather, their squares s
ij

= r2
ij

. Using equations (52)
we have,
X

j

s
ij

�
j

= |x
i

|2
X

j

�
j

� 2x
i

·
X

j

x
j

�
j

+
X

j

|x
j

|2�
j

=
X

j

|x
j

|2�
j

(1)

where i is any fixed index and the sum over j runs from 1 to n (here s
ii

= 0).
The result is independent of i and we denote it by ��0. Define the Cayley-
Menger matrix and determinant by

(54) CM(x) =

2

66666664

0 1 1 1 . . . 1
1 0 s12 s13 . . . s1n
1 s12 0 s23 . . . s2n
1 s13 s23 0 . . . s3n
...

...
...

...
...

1 s1n s2n s3n . . . 0

3

77777775

F (x) = |CM(x)|.

Then we have CM(x)� = 0 where now � = (�0,�1, . . . ,�n

). Conse-
quently, we have

F (x) = |CM(x)| = 0

for any Dziobek configuration or indeed for any configuration with dim (x) 
n� 2.

To find equations for Dziobek central configurations (DCC’s) begin by
setting � = m0�

0 in the standard equations (10). After some algebra we
find for each j = 1, . . . , n:

(55)
nX

i=1

m
i

S
ij

x
i

= 0



156

where

(56)

S
ij

=
1

r3
ij

� �0 i 6= j

m
j

S
jj

= �
X

i 6=j

m
i

S
ij

Proposition 22. Let x be a Dziobek central configuration of the n-body
problem, let S

ij

be given by (56) and let � be any nonzero solution of (52).
Then there is a real number  6= 0 such that

(57) m
i

m
j

S
ij

= �
i

�
j

.

Moreover, at least two of the �
i

are nonzero.

Proof. Equation (55) and the second equation of (56) show that for each
j = 1, . . . , n the vector

(m1S1j ,m2S2j , . . . ,mn

S
nj

)

is a solution to equations (52). Since the solution is unique up to a constant
multiple there must be constants k

j

such that

m
i

S
ij

= k
j

�
i

.

Since S
ij

= S
ji

, the vector (k1, . . . , kn) is a multiple (�1/m1, . . . ,�n

/m
n

)
so we get (57) for some real number . If  = 0 or if only one of the �

i

were
nonzero then all of the S

ij

, i 6= j would be equal. But this only happens for
the regular simplex, which is not a Dziobek configuration. QED

Multiplying two of the equations (57) gives:

Corollary 3. Let x be a Dziobek configuration and let S
ij

be given by (56).
Then for any four indices i, j, k, l 2 {1, . . . , n} we have

S
ij

S
kl

= S
il

S
kj

.

These equations can be used to derive some mass-independent constraints
on the shapes of CC’s. For example, when n = 4 we have two independent
equations of the form

(r312 � �0)(r334 � �0) = (r313 � �0)(r324 � �0) = (r314 � �0)(r323 � �0).

Eliminating �0 gives a necessary condition on the distances, in addition to
the vanishing of the Cayley-Menger determinant, for a configuration to be
central for some choice of the masses.

13. Convex Dziobek Central Configurations

In this section we present an existence proof for convex Dziobek config-
urations based on ideas of Xia [48]. First we discuss the geometry of the
space of convex configurations. Consider the n-body problem in Rn�2 as
in section 12. The normalized configuration space N is di↵eomorphic to a
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sphere of dimension (n� 1)(n� 2)� 1. The Dziobek configurations form an
open subset, but N also contains configurations with dim (x) < n� 2.

For each x 2, let �(x) be the vector of determinants (53) representing, up
to a factor, the (n�2)-dimensional volumes of its (n�1)-body subconfigura-
tions. Then � : N ! V ⇢ Rn where V is the hyperplane �1 + . . .+�

n

= 0.
If x is a Dziobek configuration then at least two of the determinants �

i

are
nonzero and � determines a point [�] of the unit sphere S(V) ' S

n�2 in
V. The planes �

i

= 0 divide the sphere into components where the signs of
the �

i

are constant. Let S(V)0 denote the complement of these planes.
The signs of the variables �

i

provide a geometric classification of Dziobek
configurations. Suppose, for example, that �

n

6= 0 so that the first n � 1
bodies span a non-degenerate simplex in Rn�2 and the ratios b

i

= ��
i

/�
n

,
i = 1, . . . , n � 1 are the barycentric coordinates of x

n

with respect to this
simplex [6]. In particular, x

n

is in the interior of the simplex if and only if
b
i

> 0 for i = 1, . . . , n� 1. This provides a simple characterization of when
a Dziobek configuration is non-convex, namely, we must have either exactly
one �

i

> 0 and �
j

< 0, j 6= i or else exactly one �
i

< 0 and �
j

> 0, j 6= i.
Let NCD ⇢ N denote the open set of non-convex Dziobek configuration.

The complement K = N \ NCD is a compact set containing all of the
convex Dziobek configurations. There will be some point x 2 K where U |

K

achieves its minimum and we would like to conclude that x is a convex
Dziobek central configuration. This entails showing that the minimum does
not occur on the boundary @K. We will prove this for n = 4 and get
existence of planar, non-collinear convex central configurations for the four-
body problem, a result due to MacMillan and Bartky [22]. Unfortunately,
there seem to be problems extending the proof to higher dimensions. To
highlight the di�culties, we will split the proof into two parts. First we
consider the part of @K consisting of Dziobek configurations. This part of
the proof works for all n.

Proposition 23. Let x 2 @K be a Dziobek configuration. Then x is not the
minimizer of U |

K

.

Proof. We will show that arbitrarily close to x, there are points of K with
strictly smaller values of U |

K

. Instead of working with normalized configu-
rations and U |

K

we can forget the normalization and use the homogeneous
function F = I(x)U(x)2.

By hypothesis, there is a sequence of non-convex Dziobek configurations
xk ! x. After re-indexing we may assume that for all k, the n-th body xk

n

is contained in the interior of the simplex formed by xk1, . . . , x
k

n�1. Taking
the limit we conclude that x

n

is contained in the boundary of the closed
simplex formed by x1, . . . , xn�1. Since we are assuming that x is still a
Dziobek configuration, x1, . . . , xn�1 span a non-degenerate (n� 2)-simplex.
After re-indexing again we may assume that x

n

is contained in the facet of
this simplex spanned by x2, . . . , xn�1. Let x

ik

, k = 1, . . . , n � 2 denote the
coordinates of the bodies in the ambient space Rn�2. After a rotation and
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translation we may assume x11 > 0 and x
i1 = 0, i = 2, . . . , n � 1. In other

words all of the bodies except x1 lie in a coordinate plane with x1 strictly
to the right.

Consider the distances r1k from x1 to the other bodies. Since x
n

is con-
tained in the closed simplex spanned by x2, . . . , xn�1, we will have r1n < r1k
for some k 2 {2, . . . , n � 1} and we may assume without loss of general-
ity that r1n < r12. Then we will see that moving x

n

a little to the left
while moving x2 a little to the right decreases F . Moreover these perturbed
configurations are in K.

We will use mutual distance version of the moment of inertia (9) and the
usual formula for U(r

ij

). Note that if we move x2, xn in the direction of
the first coordinate axis, the derivatives of the distances r

ij

, 2  i < j  n
are all zero. Only r12 and r1n change to first order. If we change the first
coordinates of x2, xn by �x21 = m�1

2 ⇠ and �x
n1 = �m�1

n

⇠ for some small
⇠ > 0, a short computation shows that the first-order change in F is

�F = 2IUm1x11⇠(r
�3
12 � r�3

1n )

where x11 > 0 is the first coordinate of x1. Since r1n < r12 and ⇠ > 0, we
have �F < 0 as required. QED

Next we need to consider boundary points x 2 @K with dim (x) < n� 2.
It is easy to see that every configuration with dim (x) < n � 2 can be per-
turbed into both a convex and non-convex Dziobek configuration, hence all
such lower-dimensional configurations are in @K. Fix a dimension k < n�2
and let N

k

⇢ N be the set of configurations with dim (x)  k. Since
N

k

⇢ @K ⇢ K it follows that if x 2 N
k

is a minimizer of U |
K

then it is also
a minimizer of U |Nk and is therefore a lower-dimensional CC. Therefore, in
order to rule out such boundary points we need to understand how the po-
tential changes when we perturb x to a convex Dziobek configuration. We
know from proposition 17 that there will be some perturbation to a Dziobek
configuration which lowers the potential, but we don’t know that this pertur-
bation moves us into K. When n = 4, however, the only lower dimensional
configurations are collinear and we have the stronger proposition 16.

Proposition 24. There exists at least one convex, planar, non-collinear
central configuration of the four-body problem for each cyclic ordering of the
bodies, hence at least 6 in all up to similarly in the plane.

Proof. If x 2 @K is a collinear configuration, then proposition 16 shows
that every perturbation of x to a non-collinear configuration in N will lower
the potential. In particular, perturbing x into K will lower the potential.
On the other hand, proposition 23 shows that the non-collinear boundary
points also admit potential-lowering perturbations into K. So the minimizer
of U |

K

is in the interior as required.
Note the there are 6 components of Dziobek configurations with �’s hav-

ing the convex sign patterns

(+,+,�,�) (+,�,+,�) (+,�,�,+)
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and three more with the signs reversed. These correspond to the distinct
cyclic orderings. If K0 is the closure of any one of these, we can apply the
same argument to find a CC in its interior. We only need to note that the
required potential-lowering perturbations can be made into K0. QED

In [48] it is claimed that the analogous result holds for n = 5, but as
noted above, more information about the behavior of planar five-body CC’s
under perturbations into Dziobek configurations seems to be needed.

Given that convex Dziobek configurations exist one can ask about their
possible shapes. It is possible to use the equations (57) together with the
positivity of the masses and the signs of the �

i

to derive some simple geo-
metrical constraints [22, 38].

14. Generic Finiteness for Dziobek Central Configurations

In the last section we will present a proof that there are at most finitely
many similarity classes of Dziobek central configurations for generic choices
of the masses. The proof is based on [27]. We will also sketch a proof that
these central configurations are generically non-degenerate.

Proposition 25. For generic choices of the masses, there are only finitely
many Dziobek central configurations up to similarity. In fact there is a mass-
independent bound on the number of such configurations valid whenever the
number is finite.

In particular, this applies to planar CC’s of the four-body problem and
spatial but non-planar CC’s of the five-body problem. For the four-body
problem, the only non-Dziobek central configurations are the regular tetra-
hedron and the collinear CC’s. So in this case it follows that the total
number of CC’s is generically finite. However, there is a stronger result [15]:
the number of CC’s is finite for all choices of positive masses and is at most
8472. This is proved by completely di↵erent methods which required exten-
sive algebraic computations. Similar methods were applied to the spatial
five-body problem in [14] with the result that the generic conditions on the
masses mentioned in proposition 25 are made explicit. For the planar five-
body problem, Albouy and Kaloshin have recently proved generic finiteness
with explicit genericity conditions [4]. It is still open whether or not there
exist exceptional choices of five positive masses which admit infinitely many
CC’s but Roberts has an example involving masses of di↵erent signs [36].
The problem of finiteness for planar CC’s was singled out by Steve Smale
as the sixth of eighteen problems for twenty-first century mathematics [43].
But for n > 5 even generic finiteness is open.

The rest of this section is devoted to the proof of proposition 25. The key
point is to find the dimension of the algebraic variety defined by the equa-
tions for Dziobek central configurations. If the dimension of the space of
central configurations is the same as the dimension of the space of normal-
ized mass parameters, then the generic finiteness will follow from general
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theorems of algebraic geometry. For example, in figure 2, Euler’s quintic
equation defines a two-dimensional surface. The projection of the surface to
the two-dimensional normalized mass space necessarily has zero-dimensional
fibers, at least for generic masses. In this case, all of the fibers are finite.

We begin with equations (57) relating the quantities S
ij

from (56) and
the �

i

variables. However, we will make a few modifications. First of all,
it is theoretically advantageous to work with complex, projective algebraic
varieties which are defined by homogeneous polynomial equations. Define a
new variable r0 such that �0 = r�3

0 so that

S
ij

= r�3
ij

� r�3
0 .

Let p = 1
2n(n� 1) be the number of mutual distance variables r

ij

. We will
think of the vector r = (r0, r12, . . . , r34) 2 Cp+1 as homogeneous coordi-
nates for a point [r] 2 CP(p), the complex projective space. Passing from
r to [r] can be viewed as an alternative way of normalizing the size of the
configuration.

Next we suppress the mass variables from equations (57) by defining new
variables z

i

= �i
mi

. After clearing denominators we get polynomial equations

(58) r30 � r3
ij

= z
i

z
j

r30r
3
ij

.

The following proposition shows that by introducing another variable z0 we
can get a set of equations which are separately homogeneous in the variables
r and z = (z0, z1, . . . , zn) 2 Cn+1. We will view z as a set of homogeneous
coordinates for a point [z] 2 CP(n).
Proposition 26. Suppose r

ij

are the mutual distance of a Dziobek central

configuration for some choice of masses m
i

> 0. Let r�3
0 = �0 and let

[r] 2 CP(p) be the corresponding point in projective space. Then there is a
point [z] 2 CP(n) such that

(59) z20(r
3
0 � r3

ij

) = z
i

z
j

r3
ij

.

Moreover, the Cayley-Menger determinant vanishes: F (r) = 0.

Proof. It follows from proposition 22 and the definition of r0 that the there
exist z

i

, 2 R such that (58) hold. Since  6= 0 we can define z0 2 C so that
z30 = r�3

0 and then we get equations (59). QED

Equations (59) and the Cayley-Menger determinant are separately homo-
geneous with respect to the variables r and z so they define a projective
variety in the product space CP(p) ⇥ CP(n). As usual, we need to exclude
the collision configurations. Let

⌃ = {([r], [z]) 2 CP(p)⇥ CP(n) : z0r0
Y

i<j

r
ij

= 0}.

Then we can define a variety, V , which contains all of the Dziobek central
configurations:

V = {([r], [z]) 2 CP(p)⇥ CP(n) \ ⌃ : F (r) = 0 and (59) hold }.
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We will also work with the subvarieties obtained by setting some of the
z
i

= 0. Let
V
k

= {([r], [z]) 2 V : z
k+1 = · · · = z

n

= 0}.
These are quasi-projective varieties, that is, they are di↵erence sets V =
X \ Y where X,Y are projective varieties. Much of the theory of complex,
algebraic geometry applies to such di↵erence sets. We will use [9, 32, 39] as
references for this theory. One important point is that every quasi-projective
variety has a projective closure, defined as the smallest projective variety
containing V . In general, this is smaller than the variety X.

The following result is crucial for proving the generic finiteness theorem we
are after. It shows that the variety V containing the Dziobek configurations
has the same dimension as the normalized mass space.

Proposition 27. The variety V has dimV = n � 1. More generally,
dimV

k

= k � 1, k � 2.

Proof. Let ⇡2 : CP(p)⇥CP(n) ! CP(n) be the projection. The proof for V
consists of analyzing the fibers and image of the mapping ⇡2 : V ! CP(n).
Suppose [z] 2 ⇡2(V ) and let ([r], [z]) 2 V . By definition of ⌃ we have
z0r0 6= 0 so there will be a representative r of [r] with r30z

2
0 = 1. Then r

ij

satisfy

(60) g
ij

= (z
i

z
j

+ z20)r
3
ij

� 1 = 0.

It follows that we have z
i

z
j

+z20 6= 0 on ⇡2(V ) and that the mapping ⇡2 : V !
CP(n) has finite fibers. If we can show that that the projective closure
W = ⇡2(V ) has dimW = n � 1, general results from algebraic geometry
give dimV = n� 1 as well.

The main point is to show that there exists a nonzero homogeneous poly-
nomial H(z) which vanishes on ⇡2(V ). This implies dimW  n � 1. We
have p+ 1 equations for the p variables r

ij

, namely, equations (60) and the
Cayley-Menger determinant. To construct H(z), begin by taking the resul-
tant with respect to r12 of the Cayley-Menger determinant F (r) and the
polynomial g12. The result is a polynomial involving z and the variables r

ij

but with r12 eliminated. Now take the resultant with respect to r13 of this
new polynomial and g13. Continuing in this way, we can eliminate all of the
variables r

ij

obtaining a homogeneous polynomial H(z) in the z variables
alone. It is conceivable that H(z) is identically zero and the next step is to
show this is not the case.

Recall that the vanishing of the resultant is a necessary condition for
two polynomials in a single variable have a common complex root. The
polynomials may involve other variables which can be viewed as parameters.
If the parameters are such that the leading coe�cient of at least one of
the two polynomials is nonzero, then the vanishing of the resultant is also
su�cient for the existence of a common root. It follows that if H(z) = 0 for
some z 2 Cn+1 such that

(61) z
i

z
j

+ z20 6= 0 1  i < j  n
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then there do exist r
ij

2 C such that equations (60) and the Cayley-Menger
condition hold. Therefore, to show that H(z) is not identically zero, it
su�ces to find a single point z such that (61) hold but for which the required
r
ij

do not exist.
To this end, choose z such that z0 = 1, z

i

= 0, 3  i  n Then for
3  i, j  n we have z

i

z
j

+ z20 = 1 and the equations g
ij

= 0 reduce to
r3
ij

= 1. So these r
ij

and their squares s
ij

are all third roots of unity. On
the other hand, if we choose z1, z2 so that

z1z2 + z20 = 1/
p
8

then r312 =
p
8 and s12 is twice a third root of unity. We will show that with

this z, the Cayley-Menger determinant does not vanish.

Lemma 3. Let !
ij

2 C, 0  i < j  n, be third roots of unity. Then
�������������

0 1 1 1 . . . 1
1 0 2!12 !13 . . . !1n

1 2!12 0 !23 . . . !2n

1 !13 !23 0 . . . !3n
...

...
...

...
...

1 !1n !2n !3n . . . 0

�������������

6= 0.

Proof. The determinant can be expanded as a sum of monomials in the !
ij

with integer coe�cients. Each monomial is equal to an integer multiple of

1,! or !2 where ! = �1
2 +

p
3
2 i. Therefore the determinant is of the form

↵+�!+�!2 where ↵,�, � are integers. An expression of this form vanishes
if and only if it is a multiple of the minimal polynomial of !, 1+!+!2, that
is, if and only if ↵ = � = �. A necessary condition for this is that ↵+ �+ �
be divisible by 3. Now the sum ↵ + � + � is the value of the determinant
with all !

ij

= 1 which turns out to be (�1)n4. So the determinant cannot
vanish. QED

It follows that our homogeneous polynomial H(z) is not identically zero.
Therefore the subvariety Z = {[z] : H(z) = 0} ⇢ CP(n) has dimension n�1.
The the projection ⇡2(V ) is contained in Z In fact

⇡2(V ) = {[z] 2 Z : (61) hold}.
Since ⇡2(V ) 6= ;, at least some of the irreducible components of Z inter-
sect the set where (61) hold. Let W denote the union of these irreducible
components (W will be the zero set of those factors of H(z) which are not
divisible by any of the polynomials in (61)). Then dimW = n � 1 and the
complement W \ ⇡2(V ) is a lower-dimensional subvariety. It follows that
W is the projective closure of ⇡2(V ) and that dimW = dimV = n � 1 as
claimed.

The proof for V
k

is similar, but we use the projection ⇡2 : V
k

! CP(k)
where we view CP(k) as the subset of CP(n) with z

k+1 = · · · = z
n

= 0.
Again we need to see that the resultant H(z) does not vanish identically on
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CP(k). This follows because the point z withH(z) 6= 0 which we constructed
above is actually in CP(k), k � 2. QED

So far, we have discussed the variety V of Dziobek central configurations
without fixing the masses. Next we discuss the mapping from V to the
normalized mass space. A nonzero mass vector m = (m1,m2, . . . ,mn

) de-
termines a point of projective space [m] 2 RP(n� 1) ⇢ CP(n� 1). We will
think of CP(n�1) as the normalized mass space. A generic mass vector will
mean [m] 2 CP(n � 1) \ B where B is a proper subvarienty of CP(n � 1).
Note that if B is a such proper subvariety then B\RP(n�1) is also a proper
subvariety. This follows since any complex polynomial which vanishes iden-
tically on RP(n� 1) also vanishes identically on CP(n� 1).

Relations between the variables ([r], [z]) 2 V and the masses are derived
from the fact that the vector

� = (�0,�1, . . . ,�n

) = (�0,m1z1, . . . ,mn

z
n

)

is in the kernel of the Cayley-Menger matrix CM(r) from (54). Let K ⇢
CP(p) be the subvariety of mass vectors [r] such that rankCM(r) < n. If
[r] 2 K then r

ij

cannot be the mutual distance of a Dziobek configuration.
Consider the decomposition of V into irreducible components. Call an ir-
reducible component W a Dziobek component if W 6⇢ K. To study generic
finiteness for Dziobek configurations it su�ces to consider each Dziobek
component separately.

If W ⇢ V is a Dziobek irreducible component, then the vector � is
uniquely determined up to a constant multiple. There are two cases de-
pending on whether or not some of the variables z

i

vanish identically on
W , a possibility we will denote by z

i

⌘ 0. If z
i

6⌘ 0 for all i then the
subset W0 = {([r], [z]) 2 W : z

i

= 0 for some i} is a proper subvariety
of W . The uniqueness of � implies that [m] is uniquely determined for
([r], [z]) 2 W \ W0. This means that we have a rational mass mapping
W ! CP(n � 1) assigning to each point of W a unique, projective mass
vector. Since dimW = n � 1 = dimCP(n � 1) it follows that a generic
[m] has a finite number of preimages in W . More precisely, either the mass
mapping takes W into a proper subvariety of the mass space or not. In the
first case the generic mass point [m] has no preimages in W . In the latter
case, we say that the mapping is dominant and the generic point [m] has a
nonzero but finite number of preimages, the number being bounded by some
bound which is independent of [m].

On the other hand, if some z
i

⌘ 0 on W we may assume without loss of
generality that W is a component of V

k

from proposition 27. Since z
k+1 =

. . . = z
n

= 0 the (n� k) masses m
k+1 = . . . = m

n

are arbitrary. But other
masses are unique up to a constant factor. Then proposition 27 shows that

W̃ = {([r], [z], [m] : ([r], [z]) 2 W,CM(r)� = 0}
is a subvariety of the product CP(p) ⇥ CP(n) ⇥ CP(n � 1) of dimension
(k� 1) + (n� k) = n� 1. Projection onto the mass space defines a rational
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map W̃ ! CP(n� 1) and the same reasoning as before shows that a generic
mass point has a finite number of preimages in W . This completes the proof
of generic finiteness.

The generic non-degeneracy of DCC’s follows from another nice fact about
rational maps of varieties. Consider a dominant rational map between vari-
eties of the same dimension. Then for a generic [m] in the range space, all of
its preimages are smooth points (meaning that the variety is locally a com-
plex manifold) and the mapping is a local di↵eomorphism. If this holds for a
map of complex manifolds then it also holds for the real parts. Applying this
theory to the real part of the varieties W̃ in RP(p)⇥RP(n)⇥RP(n�1) shows
that the variety of DCC’s looks like a finite covering map near a generic real
[m].

On the other hand, consider Dziobek CC’s as critical points of U in M,
the quotient space of N under the action of the rotation group. Since we
are working in Rn�2 the Dziobek configurations have top dimension and the
quotient space is locally a manifold. The implicit function theorem shows
that DCC has a unique smooth continuation to nearby masses with the
map to mass space a local di↵eomorphism if and only if it is non-degenerate
critical point in M. So generic masses admit only non-degenerate DCC’s.

15. Some Open Problems

We will close these notes by mentioning some open questions about central
configurations. Perhaps the simplest one to state if not to solve, is Smale’s
sixth problem about finiteness of the number of central configurations in the
plane for fixed positive masses. As noted in the last section, even the weaker
question of generic finiteness is open for n > 5. One could also consider the
same problem in higher dimensions or for S-balanced configurations with
both the masses and the symmetric matrix S fixed. The generic finiteness
problem seems more tractable in light of Roberts’ example of a continuum of
solutions for fixed non-positive masses and the di�culties preventing Albouy
and Kaloshin from handling all positive masses in the five-body case. It
seems that opening up the problem to allow SBC’s might make a positive
mass counterexample possible.

Another type of open problem is about the Morse indices of CC’s and
SBC’s. As noted in section 10, not much is known about the Morse indices
of non-collinear CC’s and even about collinear SBC’s. Good results about
this would improve the Morse theoretical estimates of the total number of
critical points. It was a lack of information about the Hessian in directions
normal to the subspace occupied by the configurations which prevented us
from extending the existence proof for convex Dziobek configurations to
n > 4 bodies. The most natural conjecture, that the normal blocks of the
Hessian are negative semi-definite, is not true in general. There are planar
CC’s for which the potential increases in certain normal directions [26, 30].
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As far as we know, the convex Dziobek configurations of the four-body
problem are unique given the ordering of the bodies but no proof has been
given. The same problem could be posed for n > 4 once the existence
problem is solved.

Another group of open questions concerns a topic not treated in these
notes, namely the dynamical stability of relative equilibrium and homo-
graphic motions. Given a planar CC we saw that we simple relative equilib-
rium solution where the bodies rigidly rotate around their center of mass.
In rotating coordinates this becomes an equilibrium and one can ask about
its linear stability. In particular one can ask if there is any relation between
the eigenvalues at the equilibrium point and the Morse index of the critical
point. All of the known examples of linearly stable relative equilibria corre-
spond to critical points which are local minima. Is this always the case ? In
light of Albouy and Chenciner’s theory of higher-dimensional relative equi-
libria, one can generalize the problem to ask for the relationship between
the properties of an SBC as a critical point and as an equilibrium point of
the reduced equations of motion. In fact, the problem of linear stability of
higher-dimensional relative equilibria seems to be completely open.
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