Richard Moeckel

Central Configurations of the Newtonian \boldsymbol{N}-Body Problem

These are lecture notes for an advanced course which I plan to give at the Centre de Recerca Matemàtica near Barcelona in January 2014. This is the version I wrote before giving the lectures. I suppose some errors and typos will be detected and corrected during the lectures.

The topic is one of my favorites - central configurations of the n-body problem. I gave a course on the same subject in Trieste in 1994 and wrote up some notes (by hand) which can be found on my website [29]. For the new course, I tried to focus on some new ideas and techniques which have been developed in the intervening twenty years. In particular, I consider space dimensions bigger than three. There are still a lot of open problems and it remains an attractive area for mathematical research.

1. The n-Body Problem

The Newtonian n-body problem is the study of the dynamics of n point particles with masses $m_{i}>0$ and positions $x_{i} \in \mathbb{R}^{d}$, moving according to Newton's laws of motion:

$$
\begin{equation*}
m_{j} \ddot{x}_{j}=\sum_{i \neq j} \frac{m_{i} m_{j}\left(x_{i}-x_{j}\right)}{r_{i j}^{3}} \quad 1 \leq j \leq n \tag{1}
\end{equation*}
$$

where $r_{i j}=\left|x_{i}-x_{j}\right|$ is the Euclidean distance between x_{i} and x_{j}. Although we are mainly interested in dimensions $d \leq 3$, it is illuminating and entertaining to consider higher dimensions as well.

Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{d n}$ be the configuration vector and let

$$
\begin{equation*}
U(x)=\sum_{i<j} \frac{m_{i} m_{j}}{r_{i j}} . \tag{2}
\end{equation*}
$$

be the Newtonian potential. Then we have

$$
\begin{equation*}
m_{j} \ddot{x}_{j}=\nabla_{j} U(x) \quad 1 \leq j \leq n \tag{3}
\end{equation*}
$$

where ∇_{j} denotes the d-dimensional partial gradient with respect to x_{j} or

$$
\begin{equation*}
M \ddot{x}=\nabla U(x) \tag{4}
\end{equation*}
$$

where ∇ is the $d n$-dimensional gradient and $M=\operatorname{diag}\left(m_{1}, \ldots, m_{n}\right)$ is the matrix with d copies of each mass along the diagonal. (Later there will be an $n \times n$ mass matrix, also called M.)

Let $v_{j}=\dot{x}_{j} \in \mathbb{R}^{d}$ be the velocity vectors and $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{d n}$. Then there is an equivalent first-order system

$$
\begin{aligned}
\dot{x} & =v \\
\dot{v} & =M^{-1} \nabla U(x) .
\end{aligned}
$$

Since Newtonian potential is singular at collisions, we have to restrict x to the configuration space $\mathbb{R}^{n d} \backslash \Delta$ where

$$
\begin{equation*}
\Delta=\left\{x: x_{i}=x_{j} \text { for some } i \neq j\right\} \tag{5}
\end{equation*}
$$

is the singular set.

The phase space for the first-order system is $\left(\mathbb{R}^{n d} \backslash \Delta\right) \times \mathbb{R}^{n d}$. Newton's equations are conservative. The total energy

$$
H=K(v)-U(x) \quad K=\sum_{j=1}^{n} m_{j}\left|v_{j}\right|^{2}
$$

is constant along solutions in phase space.
Even though we are considering the n-body problem in \mathbb{R}^{d}, it may happen that the motion takes place is a subspace \mathcal{W}. In fact, let $\mathcal{W} \subset \mathbb{R}^{d}$ be any subspace. If all of the positions and velocities satisfy $x_{j}, v_{j} \in \mathcal{W}$, (1) shows that the acceleration vectors are also in \mathcal{W}. It follows that $\mathcal{W}^{n} \backslash \Delta \times \mathcal{W}^{n}$ is an invariant set for the flow in phase space. In particular we can consider the smallest subspace containing all of the positions and velocities

$$
\mathcal{S}(x, v)=\operatorname{span}\left\{x_{j}, v_{j}: j=1, \ldots, n\right\} \subset \mathbb{R}^{d}
$$

If $(x(t), v(t))$ is any solution, then $\mathcal{S}(x(t), v(t))$ is independent of t. It will be called the motion space of the solution.

2. Symmetries and Integrals

Newton's equations are invariant under simultaneous translations and rotations of all of the positions and velocities $x_{j}, v_{j} \in \mathbb{R}^{d}$. Symmetry under translations gives rise, via Nöther's theorem [5], to the conservation of the total momentum vector

$$
p=m_{1} v_{1}+\ldots+m_{n} v_{n} .
$$

Let

$$
\begin{equation*}
c=\frac{1}{m_{0}}\left(m_{1} x_{1}+\ldots+m_{n} x_{n}\right) \quad m_{0}=m_{1}+\ldots+m_{n} \tag{6}
\end{equation*}
$$

be the center of mass where m_{0} is the total mass. Then

$$
\begin{aligned}
\dot{c} & =p / m_{0} \\
\dot{p} & =0
\end{aligned}
$$

so $c(t)$ moves in a straight line with constant velocity. It follows that the positions relative to the center of mass, $y_{j}(t)=x_{j}(t)-c(t)$ are also solutions of Newton's equations. These have center of mass at the origin and total momentum zero. A solution with this property will be called centered. We will use the notation

$$
x-c=\left(x_{1}-c, \ldots, x_{n}-c\right) \in \mathbb{R}^{d n}
$$

for the configuration relative to the center of mass.
For any configuration x the vectors $x_{j}-c, j=1, \ldots, n$ span a subspace of \mathbb{R}^{d} which we will call the centered position space and denote by $\mathcal{C}(x)$. It is natural to define the dimension of a configuration to be $\operatorname{dim}(x)=\operatorname{dim} \mathcal{C}(x)$. The maximum possible dimension of a configuration of the n-body problem is $n-1$. For example, every configuration of the three-body problem has dimension 1 (collinear) or 2 (planar).

The rotation group $\mathrm{SO}(d)$ in \mathbb{R}^{d} has dimension $\binom{d}{2}=\frac{d(d-1)}{2}$. The Lie algebra so (d) consists of all anti-symmetric $d \times d$ matrices. If $Q(t)$ is a one parameter subgroup, it can be written as a matrix exponential

$$
Q(t)=e^{t \alpha} \quad \alpha \in \operatorname{so}(d)
$$

From linear algebra we know that there is a rotation $S \in \operatorname{SO}(d)$ putting α into the normal form:

$$
S^{-1} \alpha S=\operatorname{diag}\left(a_{1} j, \ldots, a_{k} j, 0 \ldots, 0\right) \quad j=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

where $a_{i} \in \mathbb{R}$. Then α has even rank, $2 k$. The one-parameter group satisfies

$$
S^{-1} Q(t) S=\operatorname{diag}\left(\rho\left(a_{1} t\right), \ldots, \rho\left(a_{k} t\right), 1, \ldots, 1\right) \quad \rho(\theta)=\left[\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Thus $Q(t)$ acts by rotation at different rates in k orthogonal planes while fixing the part of \mathbb{R}^{d} orthogonal to these planes.

For example, in \mathbb{R}^{3}, an angular velocity matrix can be written

$$
\alpha=\left[\begin{array}{rrr}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right]
$$

and the block-diagonal normal form is

$$
S^{-1} \alpha S=\left[\begin{array}{ccc}
0 & -a_{1} & 0 \\
a_{1} & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad a_{1}= \pm \sqrt{a^{2}+b^{2}+c^{2}}
$$

The corresponding one-parameter group is a rotation around the angular velocity vector (a, b, c) with constant angular speed $\left|a_{1}\right|$.

Symmetry under rotations implies that the angular momentum is preserved. The angular momentum (with respect to the origin) can be represented by an anti-symmetric $d \times d$ matrix $\omega(x, v)$ with entries

$$
\begin{equation*}
\omega_{k l}=\sum_{j=1}^{n} m_{j}\left(x_{j k} v_{j l}-x_{j l} v_{j k}\right) \tag{7}
\end{equation*}
$$

where $x_{j k}, v_{j k}$ denote the k-th components of the vectors $x_{j}, y_{j} \in \mathbb{R}^{d}$. In case $d=2$, the angular momentum reduces to a scalar ω_{12} while if $d=3$ it can be viewed as a vector

$$
\omega=\left(\omega_{23}, \omega_{31}, \omega_{12}\right)=\sum_{j=1}^{n} m_{j} x_{j} \times v_{j}
$$

where \times denotes the cross product in \mathbb{R}^{3}.
The Newtonian potential is homogeneous of degree -1 and its gradient is homogeneous of degree -2 . It follows that if $x(t)$ is any solutions of (1) and if $\lambda>0$ is constant, then $\tilde{x}(t)=\lambda^{2} x\left(\lambda^{-3} t\right)$ is also a solution. This will be called the scaling symmetry of the n-body problem.

For any configuration x, the moment of inertia with respect to the center of mass is

$$
\begin{equation*}
I(x)=(x-c)^{T} M(x-c)=\sum_{j} m_{j}\left|x_{j}-c\right|^{2} \tag{8}
\end{equation*}
$$

where y is the corresponding centered configuration. $I(x)$ is homogeneous of degree 2 with respect to the scaling symmetry. The following alternative formula in terms of mutual distances is also useful

$$
\begin{equation*}
I(x)=\frac{1}{m} \sum_{i<j} m_{i} m_{j} r_{i j}^{2} \tag{9}
\end{equation*}
$$

3. Central Configurations and Self-Similar Solutions

At this point we can define the concept which we be the main focus of these notes.

Definition 1. A central configuration (CC) for masses m_{1}, \ldots, m_{n} is an arrangement of the n point masses whose configuration vector satisfies

$$
\begin{equation*}
\nabla U(x)+\lambda M(x-c)=0 \tag{10}
\end{equation*}
$$

for some real constant λ.
Multiplying (10) on the left by $(x-c)^{T}$ and using the translation invariance and homogeneity of $U(x)$ shows that

$$
\lambda=\frac{U(x)}{I(x)}>0
$$

where $I(x)$ is the moment of inertia with respect to c from (8). If x is a central configuration then the gravitational acceleration on the j-th body due to the other bodies is

$$
\ddot{x}_{j}=\frac{1}{m_{j}} \nabla_{j} U(x)=-\lambda\left(x_{j}-c\right) .
$$

In other words, all of the accelerations are pointing toward the center of mass, c, and are proportional to the distance from c. We will see that this delicate balancing of the gravitational forces gives rise to some remarkably simple solutions of the n-body problem. Before describing some of these, we will briefly consider the question of existence of central configurations.

For given masses m_{1}, \ldots, m_{n} it is far from clear that (10) has any solutions at all. We will consider this question in due course. For now we just note the existence of symmetrical examples for equal masses. If all n masses are equal we can arrange the bodies at the vertices of a regular polygon, polyhedron or polytope. Then it follows from symmetry that the acceleration vectors of each mass must point toward the barycenter of the configuration. This is the condition for a central configuration, i.e., there will be some λ for which the CC equations hold.

In \mathbb{R}^{2} we can put three equal masses at the vertices of an equilateral triangle or n equal masses at the vertices of a regular n-gon to get simple
examples. One can also put an arbitrary mass at the center of a regular n-gon of equal masses as in figure 1 (left). In \mathbb{R}^{3} we have the five regular Platonic solids, the tetrahedron, cube, octahedron, dodecahedron and icosahedron. It is not clear what to do if $n \neq 4,6,8,12,20$ however. It turns out that there are six kinds of regular, convex four-dimensional polytopes but in higher dimensions there are only three, namely the obvious generalization of the tetrahedron, cube and octahedron $[10,21]$.

The regular d-simplex provides an example of a central configuration of $d+1$ equal masses in \mathbb{R}^{d} generalizing the equilateral triangle and tetrahedron. Remarkably, these turn out to be central configurations even when the masses are not equal (see proposition 11) so we do indeed have at least one CC for any choice of masses, provided we are willing to work in highdimensional spaces.

Less obvious examples can be found by numerically solving (10), for example the asymmetrical CC of 8 equal masses shown in figure 1 (right).

Figure 1. Central configurations
Central configurations can be used to construct simple, special solutions of the n-body problem where the shape of the figure formed by the bodies remains constant. The configuration changes only by simultaneous translation, rotation and scaling. In other words, the configurations $x(t)$ at different times are all similar. In this case the configuration relative to the center of mass will change only by scaling and rotation.

Definition 2. A solution of the n-body problem is self-similar or homographic if it satisfies

$$
\begin{equation*}
x(t)-c(t)=r(t) Q(t)\left(x_{0}-c_{0}\right) \tag{11}
\end{equation*}
$$

where x_{0} is a constant configuration, $r(t)>0$ a real scaling factor and $Q(t) \in \mathrm{SO}(d)$ a rotation. Here $c(t), c_{0}$ are the centers of mass of $x(t), x_{0}$.

Two special cases are the homothetic solutions where

$$
\begin{equation*}
x(t)-c(t)=r(t)\left(x_{0}-c_{0}\right) \tag{12}
\end{equation*}
$$

and the rigid motions or relative equilibrium solutions where

$$
\begin{equation*}
x(t)-c(t)=Q(t)\left(x_{0}-c_{0}\right) \tag{13}
\end{equation*}
$$

The simplest of these are the homothetic solutions. For example, if put three equal masses at the vertices of an equilateral triangle and release them with initial velocities all zero, it seems clear that the triangle will just collapse to the center of mass with each particle just moving on a line toward the center. It turns out that such a solution is possible only when x_{0} is a central configuration.
Proposition 1. If x_{0} is a central configuration with constant λ and if $r(t)$ is any solution of the one-dimensional Kepler problem

$$
\begin{equation*}
\ddot{r}(t)=-\frac{\lambda}{r(t)^{2}} \tag{14}
\end{equation*}
$$

then $x(t)$ as in (12) is a homothetic solution of the n-body problem and every homothetic solution is of this form.

Proof. Substituting $x(t)$ from (12) into Newton's equation (4) gives

$$
\ddot{r}(t) M\left(x_{0}-c_{0}\right)=\nabla U(x(t))=r(t)^{-2} \nabla U\left(x_{0}\right) .
$$

Now $\nabla U\left(x_{0}\right) \neq 0$ for all x_{0}, so this equation is satisfied if and only if there is some constant, call it $-\lambda$, such that

$$
\ddot{r}(t) r(t)^{2}=-\lambda \quad-\lambda M\left(x_{0}-c_{0}\right)=\nabla U\left(x_{0}\right) . \quad \text { QED }
$$

The one-dimensional Kepler problem (14) describes the motion of a point on a line gravitationally attracted to a mass λ at the origin. It is easy to see qualitatively what will happen even without solving it. For example, the solution $r(t)$ with initial velocity $\dot{r}(0)=0$ collapses to the origin in both forward and backward time. The corresponding homothetic solutions maintain the shape of the underlying central configuration x_{0} while collapsing to a total collision at the center of mass in both forward and backward time. Each body moves along a straight line toward the collision. From the examples of central configurations mentioned above we see that we can have homothetically collapsing solutions in the shape of an equilateral triangle, regular n-gon or regular polytope.

It turns out that central configurations also lead to rigid motions and more general homographic solutions. We will postpone a general discussion of homographic solutions in \mathbb{R}^{d} to later sections. For now we will to consider the case of planar motions. Let $d=2$ and suppose $x_{0} \in \mathbb{R}^{2 n}$ is a central configuration. Let

$$
Q(\theta)=\left[\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] \in \mathrm{SO}(2)
$$

The most general planar homographic motion would be of the form

$$
\begin{equation*}
x(t)-c(t)=r(t) Q(\theta(t))\left(x_{0}-c_{0}\right) \tag{15}
\end{equation*}
$$

for some functions $r(t)>0, \theta(t)$. Substituting this into Newton's equation leads, after some simplifications, to

$$
\left(\ddot{r}-r \dot{\theta}^{2}\right) M\left(x_{0}-c_{0}\right)+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) J M\left(x_{0}-c_{0}\right)=r^{-2} \nabla U\left(x_{0}\right)
$$

where J is the $2 n \times 2 n$ matrix

$$
J=\operatorname{diag}(j, \ldots, j) \quad j=Q(\theta)^{-1} Q^{\prime}(\theta)=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] .
$$

Now $\left(x_{0}-c_{0}\right)$ and $J\left(x_{0}-c_{0}\right)$ are nonzero, orthogonal vectors in $\mathbb{R}^{2 n}$ and the latter is also orthogonal to $\nabla U\left(x_{0}\right)$. Therefore, there must be some constant $-\lambda$ such that

$$
\begin{align*}
\ddot{r}(t)-r(t) \dot{\theta}(t)^{2} & =-\frac{\lambda}{r(t)^{2}} \tag{16}\\
r(t) \ddot{\theta}(t)+2 \dot{r}(t) \dot{\theta}(t) & =0
\end{align*}
$$

and

$$
-\lambda M\left(x_{0}-c_{0}\right)=\nabla U\left(x_{0}\right)
$$

The differential equation is just the two-dimensional Kepler problem in polar coordinates whose solutions are of the familiar elliptical, parabolic or hyperbolic types and the last equation is the CC equation. Thus

Proposition 2. If x_{0} is a planar central configuration with constant λ and if $r(t), \theta(t)$ is any solution of the two-dimensional Kepler problem (16) then (15) is a planar homographic solution and every such solution is of this form.

As a special case, we could take a circular solution of the Kepler problem with $r(t)=1$. Then we get a rigid motion or relative equilibrium solution where the planar central configuration just rotates at constant angular speed around the center of mass. This is the most general relative equilibrium solution in the plane. In particular, non-uniform rotations are not possible.

In higher dimensions, the situation regarding rigid solutions and nonhomothetic homographic solutions is more complicated. mainly due to the increased complexity of the rotation group $\mathrm{SO}(d)$. The next few sections describe an approach to the general case developed by Albouy and Chenciner.

4. Matrix Equations of Motion

We will now describe an interesting reformulation of the n-body problem due to Albouy and Chenciner $[1,3,8]$ which is very convenient for studying symmetric solutions. Let

$$
X=\left[x_{1}|\ldots| x_{n}\right] \quad V=\left[v_{1}|\ldots| v_{n}\right]
$$

be the $d \times n$ matrix whose columns are the positions and velocities of the n bodies. For example, the matrix

$$
X=\left[\begin{array}{ccc}
1 & -\frac{1}{2} & -\frac{1}{2} \tag{17}\\
0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

represents a configuration of $n=3$ bodies in $d=4$ dimensions arranged at the vertices of an equilateral triangle.

We will view X, V as linear maps $X, V: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$. The domain of these maps has no particular physical meaning; it is just a space of $n \times 1$ column vectors ξ with one coordinate for each of the n-bodies. We can think of the standard basis vectors e_{1}, \ldots, e_{n} as representing the different bodies.

While the columns of X, V have an immediate dynamical meaning, it is not clear what to think about the rows. These are $1 \times n$ vectors which we will view as elements of the dual space $\mathbb{R}^{n *}$, another non-physical space. For example, the first row $\left[\begin{array}{lll}1 & -\frac{1}{2} & -\frac{1}{2}\end{array}\right]$ of the matrix above gives the coefficients of a linear function whose values on the basis vectors e_{1}, e_{2}, e_{3} of \mathbb{R}^{3} are the first coordinates of the three bodies in \mathbb{R}^{4}.

To get the matrix version of the laws of motion, write the j-th acceleration vector from Newton's equations (1) as a linear combination of the position vectors:

$$
\ddot{x}_{j}=\frac{1}{m_{j}} \nabla_{j} U(x)=\sum_{i \neq j} \frac{m_{i}\left(x_{i}-x_{j}\right)}{r_{i j}^{3}}=\sum_{i \neq j} x_{i} \frac{m_{i}}{r_{i j}^{3}}-x_{j}\left(\sum_{i \neq j} \frac{m_{i}}{r_{i j}^{3}}\right) .
$$

So we get the matrix equation:

$$
\begin{equation*}
\ddot{X}=X A(X) \tag{18}
\end{equation*}
$$

where $A(X)$ is the $n \times n$ matrix:

$$
A(X)=\left[\begin{array}{cccc}
A_{11} & \frac{m_{1}}{r_{12}^{3}} & \cdots & \frac{m_{1}}{r_{1 n}^{3}} \tag{19}\\
\frac{m_{2}}{r_{12}^{3}} & A_{22} & \cdots & \frac{m_{2}}{r_{2 n}^{3}} \\
\vdots & & & \vdots \\
\frac{m_{n}}{r_{1 n}^{3}} & \frac{m_{n}}{r_{2 n}^{3}} & \cdots & A_{n n}
\end{array}\right] \quad A_{j j}=-\sum_{i \neq j} A_{i j}=-\sum_{i \neq j} \frac{m_{i}}{r_{i j}^{3}} .
$$

Note that $A(X)$ is invariant under translations and rotations, since it involves only the mutual distances. It is independent of the space dimension d. For example, consider the three-body problem in \mathbb{R}^{d} where we have the 3×3
matrix

$$
A=\left[\begin{array}{ccc}
-\frac{m_{2}}{r_{12}^{3}}-\frac{m_{3}}{r_{13}^{3}} & \frac{m_{1}}{r_{12}^{3}} & \frac{m_{1}}{r_{13}^{3}} \\
\frac{m_{2}}{r_{12}^{3}} & -\frac{m_{1}}{r_{12}^{3}}-\frac{m_{3}}{r_{23}^{3}} & \frac{m_{2}}{r_{23}^{3}} \\
\frac{m_{3}}{r_{13}^{3}} & \frac{m_{23}^{3}}{r_{23}^{3}} & -\frac{m_{1}}{r_{13}^{3}}-\frac{m_{2}}{r_{23}^{3}}
\end{array}\right] .
$$

$A(X)$ has some other useful properties. Let $M=\operatorname{diag}\left(m_{1}, \ldots, m_{n}\right)$ be an $n \times n$ version of the mass matrix. Then we have

$$
X A(X) M=\left[\begin{array}{lll}
\nabla_{1} U(X) & \ldots & \nabla_{n} U(X)
\end{array}\right] .
$$

In addition, $A(X) M$ is symmetric:

$$
A M=(A M)^{T}=M A^{T}
$$

Finally, $A(X) M$ is negative semi-definite. Indeed, for any $\xi \in \mathbb{R}^{n}$ one can check that

$$
\xi^{T} A M \xi=-\sum_{i<j} \frac{m_{i} m_{j}}{r_{i j}^{3}}\left(\xi_{i}-\xi_{j}\right)^{2} .
$$

We will also need a matrix version of the first-order differential equations of the n-body problem:

$$
\begin{align*}
\dot{X} & =V \\
\dot{V} & =X A(X) \tag{20}
\end{align*}
$$

The $d \times 2 n$ matrix

$$
Z=\left[\begin{array}{ll}
X & V
\end{array}\right]
$$

will be called the state matrix.
It is interesting to look at the symmetries and integrals of the n-body problem from the matrix point of view. Let $k \in \mathbb{R}^{d}$ be a $d \times 1$ column vector. The translation $x_{j} \mapsto x_{j}+k$ has the effect of adding $k_{i} L$ to the i-th row of X, where

$$
L=\left[\begin{array}{lll}
1 & \ldots & 1
\end{array}\right] \in \mathbb{R}^{n *}
$$

is the $1 \times n$ row vector of 1 's. In other words the configuration matrix transforms by addition of the $d \times n$ matrix $k L$:

$$
\begin{equation*}
X \longmapsto X+k L . \tag{21}
\end{equation*}
$$

We call two $d \times n$ matrices X, Y translation equivalent if $Y=X+k L$ for some $k \in \mathbb{R}^{d}$. If X, Y are translation equivalent then the corresponding linear maps $X, Y: \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ take the same values when restricted to the hyperplane

$$
\mathcal{D}^{*}=L^{\perp}=\left\{\xi \in \mathbb{R}^{n}: L \xi=\xi_{1}+\ldots+\xi_{n}=0\right\}
$$

The converse also holds so translation equivalence amounts to saying that

$$
\left.X\right|_{\mathcal{D}^{*}}=\left.Y\right|_{\mathcal{D}^{*}}
$$

The notation \mathcal{D}^{*}, due to Albouy and Chenciner [3], is explained as follows. The quotient vector space $\mathbb{R}^{n^{*}} / L$ is called the disposition space and denoted by \mathcal{D}. Then L^{\perp} can be identified with its dual vector space.

With this notation, the total mass and center of mass can be written

$$
\begin{equation*}
m_{0}=L m \quad c=\frac{1}{m_{0}} X m \tag{22}
\end{equation*}
$$

where m is the $n \times 1$ column vector

$$
m=\left[\begin{array}{lll}
m_{1} & \ldots & m_{n}
\end{array}\right]^{T}
$$

A state will have center of mass at the origin and total momentum zero if

$$
X m=V m=0 .
$$

We will call a $d \times n$ matrix X centered if $X m=0$.
Proposition 3. Given a $d \times n$ matrix X, there is a unique centered matrix Y translation equivalent to X, namely

$$
Y=X-C \quad C=c L
$$

where c is the center of mass (22). Moreover

$$
Y=X P \quad P=I-\frac{1}{m_{0}} m L .
$$

The $n \times n$ matrix P represents the orthogonal projection of \mathbb{R}^{n} onto the hyperplane \mathcal{D}^{*} with respect to the inverse mass inner product on \mathbb{R}^{n}.

Proof. Let $Y=X-c L$. Then Y is translation equivalent to X and is centered if and only if c is given by (22). In this case it is easy to check that $Y=X P$ where P is as claimed. We have

$$
P^{2}=P \quad L P=0 .
$$

Hence, the linear map $P: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a projection map of \mathbb{R}^{n} onto \mathcal{D}^{*}. One can also check that P is an M^{-1}-symmetric matrix:

$$
P^{T} M^{-1}=M^{-1} P
$$

where M is the mass matrix. It follows that P represents the orthogonal projection onto \mathcal{D}^{*} with respect to the inner product $\langle\xi, \eta\rangle=\xi^{T} M^{-1} \eta$. QED

If the matrices $X(t), V(t)$ solve Newton's equations (20) so do the centered matrices

$$
Y(t)=X(t)-C(t)=X(t) P \quad W(t)=V(t) P
$$

which describe the dynamics relative to the center of mass. This was shown already in section 2 but it can also be verified directly from (20) with the help of the following easily verified formulas:

$$
\begin{equation*}
A(X)=A(X P)=A(X-C)=A(X) P=P A(X) \tag{23}
\end{equation*}
$$

The following facts about the right-hand side of Newton's equation are also useful

$$
\begin{equation*}
C A(X)=A(X) C=0 \quad X A(X)=(X-C) A(X-C) \tag{24}
\end{equation*}
$$

We will use the matrix formulation to study central configurations and homographic solutions in \mathbb{R}^{d}. The factorization (18) of the equations of motion
is very useful for understanding symmetrical solutions. The CC equation (10) for configuration vectors gives the following equation for configuration matrices:

$$
\begin{equation*}
X A(X)+\lambda(X-C)=0 \tag{25}
\end{equation*}
$$

5. Homographic Motions of Central Configurations in \mathbb{R}^{d}

We have already defined homographic, homothetic and rigid solutions. The configuration matrix of a homographic solution will satisfy

$$
\begin{equation*}
X(t)-C(t)=r(t) Q(t)\left(X_{0}-C_{0}\right) . \tag{26}
\end{equation*}
$$

Homothetic and rigid solutions are of the same form but with $Q(t)=I$ and $r(t)=1$, respectively.

We have seen in Proposition 1 that every homothetic motion comes from a CC, x_{0}, with $r(t)$ a solution of the one-dimensional Kepler problem. Also, from Proposition 2 shows that planar CC's can execute Keplerian homographic motions. The next result treats Keplerian homographic motions of central configurations in \mathbb{R}^{d}.

Proposition 4. Let X_{0} be the configuration matrix of a central configuration with constant λ and $\operatorname{let} \mathcal{C}\left(x_{0}\right)=\operatorname{im}\left(X_{0}-C_{0}\right)$ be its centered position subspace. Suppose there is an antisymmetric $d \times d$ matrix J such that $\left.J^{2}\right|_{\mathcal{C}}=-\left.I\right|_{\mathcal{C}}$. Then for any solution $r(t), \theta(t)$ of the planar Kepler problem (16) there is a homographic solution of the form (26) with

$$
Q(t)=\exp (\theta(t) J) .
$$

Proof. Since X_{0} is a CC the right-hand side of (18) is

$$
r Q\left(X_{0}-C_{0}\right) A\left(r Q\left(X_{0}-C_{0}\right)\right)=r^{-2} Q X_{0} A\left(X_{0}\right)=-\frac{\lambda}{r^{2}} Q\left(X_{0}-C_{0}\right)
$$

where we have used the homogeneity and the translation and rotation invariance of A. The left-hand side is

$$
\ddot{X}=\ddot{r} Q\left(X_{0}-C_{0}\right)+2 \dot{r} \dot{Q}\left(X_{0}-C_{0}\right)+r \ddot{Q}\left(X_{0}-C_{0}\right) .
$$

We have

$$
\dot{Q}=\dot{\theta}(t) J Q \quad \ddot{Q}(t)=\ddot{\theta}(t) J Q+(\dot{\theta}(t))^{2} J^{2} Q
$$

Since J and Q commute and $J^{2}\left(X_{0}-C_{0}\right)=-\left(X_{0}-C_{0}\right)$ we get

$$
\ddot{X}=\left(\ddot{r}-r(\dot{\theta})^{2}\right) Q\left(X_{0}-C_{0}\right)+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) Q J\left(X_{0}-C_{0}\right) .
$$

Since $r(t), \theta(t)$ are solutions of the Kepler problem, this reduces to

$$
\ddot{X}=-\frac{\lambda}{r^{2}} Q\left(X_{0}-C_{0}\right)
$$

as required.

Recall that a complex structure on a vector space \mathcal{S} is given by a linear map $J: \mathcal{S} \rightarrow \mathcal{S}$ with $J^{2}=-I$. If there is an inner product with respect to which J is antisymmetric then we have a Hermitian structure. An antisymmetric matrix J as above with $\left.J^{2}\right|_{\mathcal{C}}=-I_{\mathcal{C}}$ determines a Hermitian structure on the larger space

$$
\mathcal{S}=\mathcal{C}+J \mathcal{C}
$$

To see this note that \mathcal{S} is J-invariant. If $\eta \in J \mathcal{C}$ then $\eta=J \eta$ for some $\xi \in \mathcal{C}$ and we get

$$
J^{2} \eta=J^{3} \xi=J(-\xi)=-\eta
$$

Thus we actually have

$$
\left.J^{2}\right|_{\mathcal{S}}=-I_{\mathcal{S}}
$$

Since J is nondegenerate it has even rank and so $\operatorname{dim} \mathcal{S}$ must be even. \mathcal{S} is the motion space of the Keplerian homographic motion in the proposition.

Thus a necessary condition that a CC x_{0} admits a matrix J as above is that $\mathcal{C}\left(x_{0}\right)$ be contained in an even dimensional subspace of \mathbb{R}^{d}. Since any even-dimensional subspace of the Euclidean space \mathbb{R}^{d} has a natural Hermitian structure where J is rotation by $\pi / 2$ in k mutually orthogonal planes, this condition is also sufficient. This will always be possible if either d is even or $\operatorname{dim} \mathcal{C}<d$. The only bad case if when $d=\operatorname{dim} \mathcal{C}$ is odd. For example, if we have a collinear central configuration in \mathbb{R}^{1} or a non-planar configuration in \mathbb{R}^{3}, we will not be able to find such an even-dimensional subspace.

Example 1. Consider the equilateral triangle in \mathbb{R}^{4} whose configuration matrix X is given by (17). Then $\operatorname{dim} \mathcal{C}=\operatorname{rank} X=2$. Then we could choose J to be a rotation by $\pi / 2$ in the plane $\operatorname{dim} \mathcal{C}$ which fixes the orthogonal complement. The the motion space is also $\mathcal{S}=\mathcal{C}$ and the triangle rotates rigidly in its own plane.

On the other hand we could choose

$$
J=\left[\begin{array}{rrrr}
0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Now the motion space will be $\mathcal{S}=\mathbb{R}^{4}$. Each body moves in a planar Keplerian orbit, but the orbits are in different planes. Indeed, we have

$$
X(t)=r(t) \cos \theta(t)\left[\begin{array}{rrr}
1 & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+r(t) \sin \theta(t)\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2}
\end{array}\right]
$$

The i-th body moves in the plane spanned by the i-th columns in the two matrices.

On the other hand a regular tetrahedron in \mathbb{R}^{3} is not contained in any even-dimensional subspace. But if we put it in \mathbb{R}^{4} we can choose any 4×4 J with $J^{2}=-I$, such as the one in the last paragraph, and proceed to construct Keplerian homographic motions.

Note that on the centered position space $\mathcal{C}\left(X_{0}\right)$, the matrix exponential in Proposition 4 can be written

$$
Q(t)=\exp (\theta(t) J)=\cos \theta(t) I+\sin \theta(t) J
$$

It follows that for a Keplerian homographic solution as in the proposition, the j-th body moves in the two-dimensional plane spanned by the vectors $x_{j_{0}}, J x_{j 0}$. All of the bodies describe similar Keplerian orbits and the overall configuration remains similar to the $\mathrm{CC} X_{0}$ throughout the motion. In particular, for each admissible choice of J we get a family of periodic solutions with elliptical orbits of different eccentricities. Eccentricity zero gives the uniform rigid motions and eccentricity one gives the homothetic solutions.

6. Albouy-Chenciner Reduction and Relative Equilibria in \mathbb{R}^{d}.

The matrix formulation of Newton's equations leads to an elegant way to reduce by the rotational symmetry. The reduced equations lead to a deeper understanding of the most general rigid and homographic motions. This section is based on the work of Albouy and Chenciner in [3], [8]. The AlbouyChenciner method of reducing the equations of motion is a far-reaching generalization of Lagrange's reduction method for the three-body problem [18].

Starting from the matrix equations of motion (20), we can eliminate the rotational symmetry of the n-body problem by passing to Gram matrices.

$$
B(X)=X^{T} X \quad C(X, V)=X^{T} V \quad D(V)=V^{T} V
$$

The entries of these matrices are the dot products of the position and velocity vectors:

$$
B_{i j}=x_{i} \cdot x_{j} \quad C_{i j}=x_{i} \cdot v_{j} \quad D_{i j}=v_{i} \cdot v_{j}
$$

It follows that the matrices are invariant under simultaneous rotation of all positions and velocities in \mathbb{R}^{d}. In other words, if $Q \in S O(d)$ is any rotation matrix then

$$
B(Q X)=B(X) \quad C(Q X, Q V)=C(X, V) \quad D(Q V)=D(V)
$$

Note also that $B(X), D(V)$ are symmetric and positive semi-definite.
To eliminate the translational symmetry we can work with the centered matrices $Y=X-C=X P$ and $W=V P$.

Definition 3. Given configuration and velocity matrices X, V then $B(X P)$ $=B(X-C)$ is the relative configuration matrix and $B(X P), C(X P, V P)$, $D(V P)$ are the relative state matrices. If $X(t), V(t)$ is a solution, we will write $B(t), C(t), D(t)$ for the corresponding relative state matrices.

An alternative approach to eliminating the center of mass is just to view all of these matrices as representations of bilinear forms on the hyperplane \mathcal{D}^{*}. In other words, only the values $\xi^{T} B \eta$ for $\xi, \eta \in \mathcal{D}^{*}$ are significant. Let's call two $n \times n$ matrices translation equivalent if they define the same bilinear form on \mathcal{D}^{*}. Then, for example $B(X)=X^{T} X$ and $B(X-C)=$ $(X-C)^{T}(X-C)$ are translation equivalent. In fact any matrix obtained from B by adding multiples of L to the rows and multiples of L^{T} to the columns will be translation equivalent. Starting from $B(X)$ we get a particularly simple representative by adding subtracting $\frac{1}{2}\left|x_{i}\right|^{2} L$ from the i-th row and $\frac{1}{2}\left|x_{j}\right|^{2} L$ column. The diagonal entries of the new matrix are 0 and the off diagonals are

$$
x_{i}^{T} x_{j}-\frac{1}{2}\left|x_{i}\right|^{2}-\frac{1}{2}\left|x_{j}\right|^{2}=-\frac{1}{2}\left|x_{i}-x_{j}\right|^{2}=-\frac{1}{2} r_{i j}^{2} .
$$

Thus the following matrix is translation equivalent to $B(X)$ and $B(X-C)$:

$$
\hat{B}(X)=-\frac{1}{2}\left[\begin{array}{cccc}
0 & r_{12}^{2} & \ldots & r_{1 n}^{2} \tag{27}\\
r_{21}^{2} & 0 & \cdots & r_{2 n}^{2} \\
\vdots & & & \vdots \\
r_{n 1}^{2} & \ldots & r_{n(n-1)}^{2} & 0
\end{array}\right] .
$$

Using (20) it is easy to derive differential equations for the matrices B, C, D. One finds

$$
\begin{align*}
\dot{B} & =C+C^{T} \\
\dot{C} & =D+B A \tag{28}\\
\dot{D} & =C^{T} A+A^{T} C .
\end{align*}
$$

These apply equally to the original Gram matrices $B(X), C(X, V), D(V)$ and to the translation reduced versions.

Recall that $A(X)=A(X-C)$ depends only on the mutual distances $r_{i j}$. The mutual distances can be expressed in terms of the Gram matrix B since

$$
r_{i j}^{2}=\left|x_{i}-x_{j}\right|^{2}=\left|x_{i}\right|^{2}+\left|x_{j}\right|^{2}-2 x_{i} \cdot x_{j}=B_{i i}+B_{j j}-2 B_{i j} .
$$

Hence we can view A as a function $A(B)$. Then the system (28) could be used to find the time evolution of the relative state matrices B, C, D without reference to the actual state variables X, V.

At this point we can write down the reduced version of the CC equation.
Proposition 5. Let X be a $d \times n$ configuration matrix. Then X is a $C C$ with constant λ if and only if the relative configuration matrix $B(X-C)$ satisfies

$$
\begin{equation*}
B A(B)+\lambda B=0 . \tag{29}
\end{equation*}
$$

Proof. By hypothesis, we have $X A(X)+\lambda(X-C)=0$. Multiplying by $(X-C)^{T}$ and using the translation and rotation invariance of A gives (29). Conversely, if (29) holds we get

$$
(X-C)^{T}(X A(X)+\lambda(X-C))=0 .
$$

To eliminate the $(X-C)^{T}$ note that the matrix in parentheses has range contained in $\operatorname{im}(X-C)$. Since $\operatorname{im}(X-C) \cap \operatorname{ker}(X-C)^{T}=\{0\}$, the matrix in parentheses must vanish.

QED
The angular momentum is equivariant with respect to rotations:

$$
\omega(Q X, Q V)=Q \omega(X, V) Q^{T}=Q \omega(X, V) Q^{-1}
$$

for $Q \in \mathrm{SO}(d)$. The eigenvalues of $\omega(X, V)$ are rotation invariant and provide constants of motion for the relative equations.

Next we will use the reduced equations to study general rigid motions of the n-body problem. For a rigid motion we have

$$
\begin{equation*}
X(t)-C(t)=Q(t)\left(X_{0}-C_{0}\right) \tag{30}
\end{equation*}
$$

for some $Q(t) \in \mathrm{SO}(d)$ and the relative configuration matrix

$$
B(t)=B(X-C)
$$

is constant. Conversely, if $B(t)$ is constant then all of the mutual distances are constant and (30) holds for some $Q(t) \in \mathrm{SO}(d)$. Thus rigid motions are characterized by the constancy of $B(t)$. It turns out that the other relative state matrices are also constant, so we have an equilibrium point of (28).

Proposition 6. $X(t), V(t)$ are the state matrices of a rigid motion solution of the n-body problem in \mathbb{R}^{d} if and only if the relative state matrices $B(t), C(t), D(t)$ are constant.
Proof. We have seen that $X(t), V(t)$ is a rigid motion if and only if $B(t)$ is constant. It remains to show that the constancy of B implies that of C and D. Assuming $\dot{B}=0$ we also get $\dot{A}=A(B)=0$. Now use (28) to calculate the derivatives of $B(t)$.

$$
\begin{aligned}
& \dot{B}=C+C^{T}=0 \\
& \ddot{B}=\dot{C}+\dot{C}^{T}=2 D+B A+A^{T} B=0 \\
& \dddot{B}=2 \dot{D}=2\left(C^{T} A+A^{T} C\right)=0 .
\end{aligned}
$$

So we have $\dot{D}=0$ and also find that $2 D=-\left(B A+A^{T} B\right)$ which implies that

$$
\dot{C}=\frac{1}{2}\left(A^{T} B-B A\right) .
$$

We need to show that this vanishes. Computing one more derivative gives

$$
\dddot{B}=2\left(\dot{C}^{T} A+A^{T} \dot{C}\right)=\left(A^{T} B-B A\right) A-A^{T}\left(A^{T} B-B A\right)=0 .
$$

It turns out that this equation can hold only when the quantity in parentheses is already zero.

To see this we use the fact that $A M$ is a symmetric matrix so $A M=M A^{T}$. We have

$$
M\left(A^{T} B-B A\right)=M A^{T} B-M B A=A^{T} M B-M B A=-[M B, A]
$$

the commutator of $M B$ and A. Similarly

$$
M\left(\left(A^{T} B-B A\right) A-A^{T}\left(A^{T} B-B A\right)\right)=-[[M B, A], A] .
$$

Now the symmetry of $A M$ also gives $A^{T} M^{-1}=M^{-1} A$, i.e., A is M^{-1} symmetric. This implies that A is diagonalizeable with respect to some M^{-1} orthogonal basis. Choose such a basis and let the matrix representing A be $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ and that representing $M B$ have entries $b_{i j}^{\prime}$. Then the entries of $[M B, A]$ and $[[M B, A], A]$ are

$$
b_{i j}^{\prime}\left(a_{i}-a_{j}\right) \quad b_{i j}^{\prime}\left(a_{i}-a_{j}\right)^{2}
$$

respectively. Thus $[[M B, A], A]=0$ if and only if $[M B, A]=0$ as claimed. Hence $\dddot{B}=0$ implies $\dot{C}=0$ completing the proof.

QED
This result justifies the terminology relative equilbrium solution ($R E$) applied to rigid motion solutions. We really do have an equilibrium of the relative equations of motion (28). We have seen that we how to construct a uniformly rotating relative equilibrium solution based on a central configuration. But it is not at all clear that this is the only kind and indeed, we will see that rotations of certain non-central configurations are possible. However, it is true that every rigid motion is a uniform rotation.
Proposition 7. Let $X(t), V(t)$ be any rigid motion (RE) solution. Then there is a configuration matrix X_{0} (not necessarily central) and a constant antisymmetric $d \times d$ matrix α such that

$$
X(t)-C(t)=Q(t)\left(X_{0}-C_{0}\right)
$$

where $Q(t)=\exp (t \alpha)$.
We will call α the angular velocity matrix. The proof uses the following fact from linear algebra.
Lemma 1. Let L_{1}, L_{2} be $d \times k$ matrices such that $\operatorname{ker} L_{1} \subset \operatorname{ker} L_{2}$. Then there is a $d \times d$ matrix J such that

$$
L_{2}=J L_{1}
$$

Moreover, if $\operatorname{im} L_{2} \subset \operatorname{im} L_{1}$ and if the $k \times k$ matrix $L_{1}^{T} L_{2}$ is symmetric (antisymmetric), then J can be chosen to be symmetric (antisymmetric).
Proof. The hypothesis about the kernels implies that we get a well-defined linear map im $L_{1} \rightarrow \mathbb{R}^{d}$ by setting $J \xi=L_{2} u$ when $L_{1} u=\xi$. We can extend it to $J: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ by making it vanish on the Euclidean orthogonal complement $\left(\operatorname{im} L_{1}\right)^{\perp}$ and this choice makes the extension unique.

If $\operatorname{im} L_{2} \subset \operatorname{im} L_{1}$ then $J\left(\operatorname{im} L_{1}\right) \subset \operatorname{im} L_{1}$. Let ξ, η be two vectors in im L_{1} and write $\xi=L_{1} u, \eta=L_{1} v$. Then by definition of J :

$$
\xi^{T} J \eta=u^{T} L_{1}^{T} L_{2} v .
$$

If $L_{1}^{T} L_{2}$ is symmetric (antisymmetric), this shows that the restriction of J to im L_{1} is also symmetric (antisymmetric). Since we extended trivially on the orthogonal complement, it is easy to see that the extension has the same symmetry.

QED
Proof of proposition 7. Let $Z(t)=\left[\begin{array}{ll}X(t) P & V(t) P\end{array}\right]=\left[\begin{array}{ll}Y(t) & W(t)\end{array}\right]$ be the $d \times 2 n$ centered state matrix and note that the $2 n \times 2 n$ Gram matrix

$$
Z^{T} Z=\left[\begin{array}{ll}
B & C^{T} \\
C & D
\end{array}\right]
$$

encodes the relative state matrices B, C, D. For a RE solution this matrix is constant so

$$
Z^{T} \dot{Z}+\dot{Z}^{T} Z=0
$$

In other words, the $2 n \times 2 n$ matrix

$$
Z(t)^{T} \dot{Z}(t)
$$

is antisymmetric. Now apply the lemma with $L_{1}=Z(t), L_{2}=\dot{Z}(t)$ to get an antisymmetric $d \times d$ matrix $\alpha(t)$ such that $\dot{Z}(t)=\alpha(t) Z(t)$, i.e.,

$$
\dot{Y}(t)=\alpha(t) Y(t) \quad \dot{W}(t)=\alpha(t) W(t) .
$$

In particular, at $t=0$ we have

$$
\begin{equation*}
\dot{Y}(0)=W_{0}=\alpha_{0} Y_{0} \quad \dot{W}(0)=Y_{0} A\left(Y_{0}\right)=\alpha_{0} W_{0}=\alpha_{0}^{2} Y_{0} . \tag{31}
\end{equation*}
$$

We will show that

$$
Y(t)=Q(t) Y_{0} \quad Q(t)=\exp \left(t \alpha_{0}\right)
$$

to complete the proof. Since this function has the right initial conditions, we need only show that it is a solution of Newton's equations. We have

$$
\ddot{Y}(t)=\alpha_{0}^{2} Y(t)
$$

so we need to show that

$$
\begin{equation*}
\alpha_{0}^{2} Y(t)=Y(t) A(Y(t)) \tag{32}
\end{equation*}
$$

From (31) we have

$$
\begin{equation*}
\alpha_{0}^{2} Y_{0}=Y_{0} A\left(Y_{0}\right) \tag{33}
\end{equation*}
$$

so (36) holds when $t=0$. It follows for other times by multiplying by $Q(t)$ and using the rotation invariance of A.

It follows from this result that if X_{0} is a CC, then the most general possible rigid motions with shape X_{0} are the circular Keplerian ones from Proposition 4. Comparing the antisymmetric matrices which appear in the two propositions, we should have $t \alpha=\theta(t) J$. Now for the circular Kepler orbit of radius $r=1$ we have $\dot{\theta}^{2}=\lambda$. With

$$
\begin{equation*}
\alpha= \pm \sqrt{\lambda} J \tag{34}
\end{equation*}
$$

then one can check that for the solution of proposition $4, \dot{Z}=\alpha Z$ holds.

The formulas in the last proof suggest a way to construct rigid motions whose configurations are not central. The condition (33) is enough to guarantee that a corresponding rigid solution exists.

Definition 4. A configuration x is balanced in \mathbb{R}^{d} or d-balanced if there is a $d \times d$ antisymmetric matrix α such that

$$
\begin{equation*}
X A(X)-\alpha^{2}(X-C)=0 \tag{35}
\end{equation*}
$$

or equivalently if

$$
\begin{equation*}
\nabla_{j} U(x)-\alpha^{2} M\left(x_{j}-c\right)=0 . \tag{36}
\end{equation*}
$$

It is called balanced if it is d-balanced for d sufficiently large.
The definition of balanced configurations in [3] is equivalent to the one given here, but balance in a fixed space \mathbb{R}^{d} is not defined in [3]. The proof of Proposition 7 show that every balanced configuration gives rise to a uniformly rotating relative equilibrium solution (30) with $Q(t)=\exp (t \alpha)$ in the appropriate ambient space \mathbb{R}^{d}. From (34) we see that every central configuration is balanced provided it is contained in an even-dimensional subspace, hence certainly in \mathbb{R}^{d} or in \mathbb{R}^{d+1}. However there exist balanced configurations which are not central.

Before presenting an example we will derive a couple of equivalent versions of the concept of balance. Note that if X is balanced then the matrix $S=-\alpha^{2}$ is symmetric and positive semi-definite.

Proposition 8. A configuration is balanced if and only if its configuration matrix satisfies

$$
\begin{equation*}
X A(X)+S(X-C)=0 \tag{37}
\end{equation*}
$$

for some positive semi-definite matrix S. Equivalently, the relative configuration matrix $B(X-C)$ should satisfy

$$
\begin{equation*}
B A=(B A)^{T} . \tag{38}
\end{equation*}
$$

Proof. If X is balanced in \mathbb{R}^{d} then (37) holds with $S=-\alpha^{2}$. Conversely if (37) holds and if d is sufficiently large, then we can solve the equation $S=-\alpha^{2}$ for the antisymmetric matrix α. In fact it suffices to double the dimension of the space. To see this, assume without loss of generality that $S=\operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{k}^{2}, 0, \ldots, 0\right)$. Then we can use the block-diagonal matrix

$$
\alpha=\left[\begin{array}{cc}
0 & -\sigma \\
\sigma & 0
\end{array}\right] \quad \sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}, 0, \ldots, 0\right)
$$

In fact, after a rotation and translation, we could assume that $d=\operatorname{dim}(x)$. Then if x satisfies (37), it will give rise to a rigid motion in $\mathbb{R}^{2 d}$, i.e., it will be $2 d$-balanced.

Multiplying (37) by $(X-C)^{T}$ and using (24) shows that $B A$ is symmetric. Conversely suppose $B A=(X-C)^{T}(X-C) A(X)$ is symmetric. Using

Lemma 1 with $L_{1}=X-C$ and $L_{2}=(X-C) A(X)$ gives a symmetric $d \times d$ matrix $-S$ with

$$
(X-C) A(X)=-S(X-C)
$$

as required.
QED
In the following example we will use (38) to check for balance. Moreover, we can avoid explicitly shifting the center of mass by just requiring $B A=$ $(B A)^{T}$ on \mathcal{D}^{*}.

Example 2. Consider a triangle with sides $r_{12}=r, r_{13}=s, r_{23}=t$. We will investigate the inverse problem: given a configurations, find which masses make it balanced or central. We have

$$
A(X)=\left[\begin{array}{ccc}
-\frac{m_{2}}{r^{3}}-\frac{m_{3}}{s^{3}} & \frac{m_{1}}{r^{3}} & \frac{m_{1}}{s^{3}} \\
\frac{m_{2}}{r^{3}} & -\frac{m_{1}}{r^{3}}-\frac{m_{3}}{t^{3}} & \frac{m_{2}}{t^{3}} \\
\frac{m_{3}}{s^{3}} & \frac{m_{3}}{t^{3}} & -\frac{m_{1}}{s^{3}}-\frac{m_{2}}{t^{3}}
\end{array}\right]
$$

and

$$
\hat{B}(X)=-\frac{1}{2}\left[\begin{array}{ccc}
0 & r^{2} & s^{2} \\
r^{2} & 0 & t^{2} \\
s^{2} & t^{2} & 0
\end{array}\right]
$$

The condition for a balanced triangle is that the restriction of $B A$ to \mathcal{D}^{*} be symmetric. To avoid explicitly shifting the center of mass, we calculate the commutator $\hat{B} A-A^{T} \hat{B}$ and require that $e_{i}^{T}(B A-A B) e_{j}=0$ for some basis e_{1}, e_{2} for the plane \mathcal{D}^{*}. For example, we could use $e_{1}=(1,-1,0), e_{2}=$ $(1,0,-1)$. The result is a 2×2 antisymmetric matrix so there is only one equation which turns out to be

$$
\begin{align*}
m_{1}\left(s^{-3}-r^{-3}\right)\left(t^{2}-r^{2}-s^{2}\right) & +m_{2}\left(r^{-3}-t^{-3}\right)\left(s^{2}-r^{2}-t^{2}\right) \\
& +m_{3}\left(t^{-3}-s^{-3}\right)\left(r^{2}-s^{2}-t^{2}\right)=0 \tag{39}
\end{align*}
$$

For the equilateral triangle $r=s=t$ the equation is trivial, so the triangle is balanced for all choices of the masses. Of course we already knew this since it is a CC for all masses (and is even-dimensional). For any nonequilateral triangle (39) gives a two-dimensional plane of masses. This plane always intersects the positive octant, so every triangle is balanced for some two-dimensional cone of masses. For example, the isosceles triangle with $(r, s, t)=(r, s, s)$ is balanced for all mass vectors with $m_{1}=m_{2}$ and arbitrary m_{3}. On the other hand, the right triangle with $(r, s, t)=(3,4,5)$ is balanced for $183 m_{2}=392 m_{3}$ with m_{1} (the mass at the right angle) arbitrary. Since the only non-collinear CC is the equilateral triangle, there are plenty of triangles which are balanced but not central.

To investigate the possible rigid motions of such triangles we need to work with configuration matrices X and find the corresponding antisymmetric
angular velocity matrices, α. For the isosceles case in \mathbb{R}^{2} we can take

$$
X=\left[\begin{array}{ccc}
0 & 0 & x \\
y & -y & 0
\end{array}\right]
$$

and in \mathbb{R}^{d} we can just add rows of zeros. With masses $m_{1}=m_{2}=1$ we find that

$$
X A(X)+S X=0 \quad S=\operatorname{diag}\left(\frac{2+m_{3}}{s^{3}}, \frac{1}{4 y^{3}}+\frac{m_{3}}{s^{3}}\right) \quad s=\sqrt{x^{2}+y^{2}} .
$$

We need a $d \times d$ antisymmetric matrix with $\alpha^{2}=-S$. This is only possible in \mathbb{R}^{2} when $S=\lambda I$, that is, only for the equilateral CC case. In the nonequilateral case with $d=4$ the only valid angular velocity matrices are

$$
\alpha=\operatorname{diag}\left(\sigma_{1} j, \sigma_{2} j\right) \quad j=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \quad \sigma_{1}^{2}=\frac{2+m_{3}}{s^{3}}, \quad \sigma_{2}^{2}=\frac{1}{4 y^{3}}+\frac{m_{3}}{s^{3}}
$$

The isosceles triangle rotates around its symmetry axis and simultaneously around an orthogonal axis with two different frequencies, the two planes of rotation being orthogonal. The motion of the mass on the symmetry axis is planar and periodic but the other two masses move on a torus which spans \mathbb{R}^{4}. For fixed $m_{3}>0$ one can check that the eigenvalue ratio $\sigma_{2}^{2} / \sigma_{1}^{2}$ of S varies over $\left(\frac{1+4 m_{3}}{8+4 m_{3}}, \infty\right)$ as the angle at m_{3} of the isosceles shape decreases from $\frac{\pi}{2}$ to 0 .

7. Homographic Motions in \mathbb{R}^{d}

Next we will show that the orbits described in proposition 4 are actually the most general, non-rigid homographic motions. In particular, only central configurations give rise to such motions.

Proposition 9. Every non-rigid homographic solution of the n-body problem in \mathbb{R}^{d} is of the form

$$
X(t)-C(t)=r(t) Q(t)\left(X_{0}-C_{0}\right) \quad Q(t)=\exp (\theta(t) J)
$$

where X_{0} is a central configuration with constant $\lambda,(r(t), \theta(t))$ is a solution of Kepler problem (16) and J is an antisymmetric $d \times d$ matrix with $\left.J^{2}\right|_{\mathcal{C}\left(X_{0}\right)}=-\left.I\right|_{\mathcal{C}\left(X_{0}\right)}$.
Proof. [8] Since the motion is homographic, the right-hand side of (18) is

$$
X(t) A(X(t))=r(t)^{-3} X(t) A\left(X_{0}\right) .
$$

The fact that the $n \times n$ matrix $A\left(X_{0}\right)$ is M^{-1}-symmetric implies that it is diagonalizeable. One of the eigenvalues is zero since the mass vector m is in the kernel and the others are non-positive because of the negative semidefiniteness of $A M$. Let S be an invertible $n \times n$ matrix with

$$
S^{-1} A\left(X_{0}\right) S=\operatorname{diag}\left(-\lambda_{1},-\lambda_{2}, \ldots,-\lambda_{n}\right)
$$

If $W(t)=(X(t)-C(t)) S$ then Newton's equations give

$$
\ddot{W}=r(t)^{-3} X(t) A\left(X_{0}\right) S=r(t)^{-3} W(t) S^{-1} A\left(X_{0}\right) S
$$

and so the columns $w_{j}(t)$ of $W(t)$ satisfy

$$
\ddot{w}_{j}(t)=-\frac{\lambda_{j} w_{j}(t)}{r(t)^{3}} .
$$

Since the solution is homographic, we have $W(t)=r(t) Q(t) W_{0}$ where $W_{0}=$ $\left(X_{0}-C_{0}\right) S$. It follows that the columns of W, W_{0} satisfy

$$
\left|w_{j}(t)\right|=r(t)\left|w_{0 j}\right| \quad j=1, \ldots, n
$$

For each column such that $\left|w_{0 j}\right| \neq 0$, define $u_{j}(t)=w_{j}(t) /\left|w_{0 j}\right|$. Then $\left|u_{j}(t)\right|=r(t)$ for $j=1, \ldots, n$ and

$$
\ddot{u}_{j}(t)=-\frac{\lambda_{j} u_{j}(t)}{\left|u_{j}(t)\right|^{3}}
$$

i.e., the normalized nonzero columns solve Kepler's equations with constant λ_{j}. Moreover, they all have the same norm $r(t)$. It follows that each of these $u_{j}(t)$ moves in a plane and can be represented with respect to polar coordinates in that plane by functions $r(t), \theta(t)$ satisfying (16) with $\lambda=\lambda_{j}$.
Lemma 2. If $r(t), \theta(t)$ solves (16) and $r(t)$ is not constant, then λ and $\dot{\theta}(t)$ are uniquely determined by $r(t)$.

Proof. Exercise.
QED
Continuing with the proof of the proposition, we now see that all of the λ_{j} corresponding to nonzero columns of $W(t)$ are equal. Then we have

$$
X_{0} A\left(X_{0}\right)=W_{0} \operatorname{diag}\left(-\lambda_{1}, \ldots,-\lambda_{n}\right) S^{-1}=-\lambda W_{0} S^{-1}=-\lambda\left(X_{0}-C_{0}\right)
$$

where the second equation holds because changing λ_{j} to λ for a column $w_{j}=0$ does no harm. This shows that X_{0} is a central configuration.

To get the rest we will use the reduced equations of motion (28). Since we are assuming that $X(t)$ is homographic, the relative state matrices have a particularly simple form. Let $Y(t)=X(t)-C(t)=X(t) P$ and $W(t)=V(t) P$ be the centered position and velocity matrices. Then $Y(t)=r(t) Q(t) Y_{0}$ and $W(t)=\dot{r}(t) Q(t) Y_{0}+r(t) \dot{Q}(t) Y_{0}$. The relative state matrices are
$B(t)=r(t)^{2} B_{0} \quad C(t)=r(t) \dot{r}(t) B_{0} \quad D(t)=\dot{r}(t)^{2} B_{0}-r(t)^{2} Y_{0}^{T} \Omega(t)^{2} Y_{0}$
where $\Omega(t)=Q(t)^{T} \dot{Q}(t) \in \operatorname{so}(d)$. The antisymmetry of this matrix implies that terms involving $Y_{0}^{T} \Omega(t) Y_{0}$ in the calculation of these matrices vanish. Now calculating $\dot{C}(t)$ and comparing with (28) gives

$$
\begin{equation*}
\left(r \ddot{r}+\dot{r}^{2}\right) B_{0}=D+B A=D-\lambda r^{2} B_{0} \tag{40}
\end{equation*}
$$

where we used (29).
Now we already found that $r(t), \theta(t)$ are solutions of Kepler's equation. By rescaling X_{0} and choosing the origin of time, we may assume that

$$
r(0)=1 \quad \dot{r}(0)=0 .
$$

The second assumption certainly holds at the perihelion of the Kepler orbit. At this point the velocities and positions are orthogonal. Evaluating (40) at $t=0$ and using the Kepler equation (16) gives

$$
\begin{equation*}
D_{0}=\dot{\theta}_{0}^{2} B_{0} \tag{41}
\end{equation*}
$$

We also have $C_{0}=0$.
Let $Z_{0}=\left[\begin{array}{ll}Y_{0} & W_{0}\end{array}\right]$ be the initial state matrix and consider the matrices

$$
L_{1}=Z_{0} \quad L_{2}=\left[\begin{array}{ll}
\dot{\theta}_{0}^{-1} W_{0} & -\dot{\theta}_{0} Y_{0}
\end{array}\right] .
$$

We have

$$
L_{1}^{T} L_{2}=\left[\begin{array}{cc}
\dot{\theta}_{0}^{-1} C_{0} & -\dot{\theta}_{0} B_{0} \\
\dot{\theta}_{0}^{-1} D_{0} & -\dot{\theta}_{0} C_{0}
\end{array}\right]=\left[\begin{array}{cc}
0 & -\dot{\theta}_{0} B_{0} \\
\dot{\theta}_{0}^{-1} D_{0} & 0
\end{array}\right] .
$$

This $2 n \times 2 n$ matrix is antisymmetric by (41) so by Lemma 1 , there is an antisymmetric $d \times d$ matrix J such that

$$
W_{0}=\dot{\theta}_{0} J y_{0} \quad Y_{0}=-\dot{\theta}_{0}^{-1} W_{0}=-J^{2} Y_{0}
$$

By Proposition 4, $\tilde{Y}(t)=\exp (\theta(t) J) Y_{0}$ is a homographic solution and its initial conditions

$$
\tilde{Y}(0)=Y_{0} \quad \tilde{W}(0)=\dot{\theta}_{0} J Y_{0}=W_{0}
$$

are the same as those of the given homographic solution, $Y(t)$. Therefore $Y(t)=\exp (\theta(t) J) Y_{0}$ as claimed.

QED
Although we have made of point of studying the special solutions of the n-body problem in \mathbb{R}^{d}, we will summarize the results for the physical case $d=3$. The homographic solutions in \mathbb{R}^{3} are of the following types. For any central configuration and any solution of the one-dimensional Kepler problem there is a homothetic solution. For any central configuration which is contained in some two-dimensional subspace and any solution of the twodimensional Kepler problem, there is a homographic solution for which the bodies remain in the same plane. This is a uniform planar rigid motion if we take the circular solution of the Kepler problem. There are no other homographic motions. In particular, a non-planar CC does not lead to any rigid or homographic, non-homothetic solutions. A configuration which is balanced but not central is not balanced in \mathbb{R}^{3} so does not give rise to a RE solution in \mathbb{R}^{3}.

8. Central Configurations as Critical Points

Now that we have some motivation for studying central configurations, lots of interesting questions arise. Fixing the masses m_{i} we can ask whether central configurations exist and if so, how many there are up to symmetry. Working with configuration vectors $x \in \mathbb{R}^{d n}$ we need to study solutions of the CC equation

$$
\begin{equation*}
\nabla U(x)+\lambda M(x-c)=0 \tag{42}
\end{equation*}
$$

If x is a CC then so is any configuration y obtained from x by translations and rotations. In particular, the centered configuration $x-c$ is also a CC. If $k>0$ then $k x$ is also a central configuration but with a different λ. Recall that $\lambda(x)=U(x) / I(x)$ where $I(x)$ is the moment of inertia around the center of mass. So

$$
\lambda(k x)=\lambda(x) / k^{3} .
$$

We will view such CC's as equivalent and refer to similarity classes of CC's.
More generally we could study balanced configurations which satisfy

$$
\begin{equation*}
\nabla U(x)+\lambda \hat{S} M(x-c)=0 \tag{43}
\end{equation*}
$$

where $\lambda>0$ and $\hat{S}=\operatorname{diag}(S, S, \ldots, S)$ is a $d n \times d n$ block-diagonal matrix with identical $d \times d$ blocks S, the positive semi-definite, symmetric matrix from Proposition 8. We will call x an S-balanced configuration (SBC) if (43) holds. CC's are a special case with $S=I$. By putting a λ into (43) we can say that x and $k x$ are both S-balanced. The equation is also invariant under translations but generally not invariant under rotations. In fact the matrix S transforms under rotations and scalings via

$$
S(k Q x)=k^{-3} Q S Q^{T}
$$

In the CC case we have $S=I$ and we get rotation invariance. The other extreme would be that S has d distinct eigenvalues and then it is not stabilized by any rotation. By choosing an appropriate rotation Q we can get

$$
Q S Q^{T}=\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{d}^{2}\right)
$$

It is no loss of generality to assume S is positive definite since it is definite on $\mathcal{C}(x)$ and we could extend it arbitrarily on $\mathcal{C}(x)^{\perp}$.

Just as in the matrix formulation of the problem, we can view the passage from x to $x-c$ as an orthogonal projection. In fact

$$
x-c=\hat{P} x
$$

where $\hat{P}: \mathbb{R}^{d n} \rightarrow \mathbb{R}^{d n}$ is orthogonal projection onto the subspace where $m_{1} x_{1}+\ldots+m_{n} x_{n}=0 \in \mathbb{R}^{d}$ with respect to the mass inner product $v^{T} M w$. The matrix of \hat{P} is

$$
\hat{P}=I-\frac{1}{m_{0}} \hat{L}^{T} \hat{L} M \quad \hat{L}=\left[\begin{array}{llll}
I & I & \ldots & I \tag{44}
\end{array}\right]
$$

where L is $d \times d n$ with blocks of $d \times d$ identity matrices. One can check that \hat{P} is an M-symmetric projection matrix. For convenience we record these facts and a few other easily verified equations involving the matrices $\hat{L}, M, \hat{S}, \hat{P}:$

$$
\begin{equation*}
\hat{P}^{T} M=M \hat{P} \quad \hat{P}^{2}=\hat{P} \quad \hat{P} \hat{S}=\hat{S} \hat{P} \quad M \hat{S}=\hat{S} M \quad \hat{L} \hat{S}=S \hat{L} \tag{45}
\end{equation*}
$$

These equations, together with their transposes will be useful for calculations later on.

The following proposition gives a characterization of CC's and SBC's as constrained critical points of the potential. The first constraint is to fix the center of mass at the origin:

$$
c=\hat{L} M x=0 .
$$

The other constraint is to fix the centered moment of inertia. To handle the CC and SBC cases together we will define an S-weighted moment of inertia. Assuming that S is positive definite, we can use it to define a new inner product and norm on \mathbb{R}^{d}

$$
\langle\xi, \eta\rangle_{S}=\xi^{T} S \eta \quad|\xi|_{S}^{2}=\xi^{T} S \xi .
$$

Then set

$$
I_{S}(x)=(x-c)^{T} \hat{S} M(x-c)=\sum_{j=1}^{n} m_{j}\left|x_{j}-c\right|_{S}^{2}
$$

As in the CC case, the constant λ in (43) is $\lambda=U(x) / I_{S}(x)$.
Define the S-normalized configuration space

$$
\mathcal{N}(S)=\left\{x: c=\hat{L} M x=0, I_{S}(x)=1\right\}
$$

Any configuration x determines a unique S-normalized configuration $y=$ $k(x-c), k=|x|_{S}^{-1}$ with $I_{S}(y)=1$. Note that the center of mass condition defines a subspace of $\mathbb{R}^{d n}$ of dimension $d(n-1)$ and then $I_{S}=1$ gives an ellipsoid in this subspace. Hence $\mathcal{N}(S)$ is a smooth compact manifold diffeomorphic to a sphere: $\mathcal{N}(S) \simeq \mathbf{S}^{d(n-1)-1}$.

Proposition 10. A configuration vector x is S-balanced if and only if the corresponding normalized configuration is a critical point of the Newtonian potential $U(x)$ restricted to $\mathcal{N}(S)$.
Proof. $\mathcal{N}(S)$ is a smooth codimension-one submanifold of the subspace ker $\hat{L} M \subset \mathbb{R}^{d n}$. Therefore $x \in \mathcal{N}(S)$ is a critical point of $\left.U\right|_{\mathcal{N}(S)}$ if and only if

$$
\left(D U(x)+k D I_{S}(x)\right) v=0
$$

for all $v \in \operatorname{ker} \hat{L} M$ where $k \in \mathbb{R}$ is a Lagrange multiplier. Equivalently we need

$$
\left(D U(x)+k D I_{S}(x)\right) \hat{P}=0
$$

where \hat{P} is the orthogonal projection onto ker $\hat{L} P$ from (44). From the translation invariance $U(\hat{P} x)=U(x)$ so we have $D U(x) \hat{P}=D U(x)$ for $x \in \mathcal{N}(S)$. Similarly $D I_{S}(x) \hat{P}=D I_{S}(x)$. So we can drop \hat{P} from the last equation and take transposes to get

$$
\nabla U(x)+k \nabla I_{S}(x)=0 .
$$

Now $I_{S}(x)=x^{T} \hat{P}^{T} \hat{S} M \hat{P} x$ so $\nabla I_{S}(x)=2 \hat{P}^{T} \hat{S} M \hat{P} x$. But using (45) this can be simplified to

$$
\nabla I_{S}(x)=2 \hat{S} M \hat{P} x=2 \hat{S} M(x-c)
$$

so the condition for a critical point is exactly (43) with $\lambda=2 k$.

Corollary 1. For every choice of masses $m_{i}>0$ and every $d \times d$ positive definite symmetric matrix S, there exists at least one S-balanced configuration $x \in \mathcal{N}(S) \subset \mathbb{R}^{d n}$. In particular, there is always at least one $C C$.

Proof. $\mathcal{N}(S)$ is a compact submanifold of $\mathbb{R}^{d n}$. The Newtonian potential defines a smooth function $U: \mathcal{N}(S) \backslash \Delta \rightarrow \mathbb{R} . \mathcal{N}(S) \cap \Delta$ is compact and $U(x) \rightarrow \infty$ as $x \rightarrow \Delta$. It follows that U attains a minimum at some point $x \in \mathcal{N}(S) \backslash \Delta$ and this point will be an S-balanced configuration. Of course x actually determines a whole similarity class of SBC's. QED

Although restricting to the compact space $\mathcal{N}(S)$ is useful, there are a couple of alternative variational characterizations of CC's and SBC's as unconstrained critical points. First note that the requirement that the center of mass be at the origin is not necessary, as shown by the part of the proof of Proposition 10 where we dropped the projection \hat{P}. An alternative to normalizing the moment of inertia is to require that $\lambda=1$. For every solution of (42) or (43), there is a rescaled solution with $\lambda=1$. This rescaled configuration will be a critical point of the function

$$
U(x)+I_{S}(x)
$$

on $\mathbb{R}^{d n}$. Yet another variational approach is to avoid normalization altogether and look for critical points of the homogeneous function

$$
\sqrt{I_{S}(x)} U(x) \quad \text { or } \quad I_{S}(x) U(x)^{2}
$$

If x is a solution of (43) we get a ray of critical points $k x, k>0$ for these functions. The proofs of these alternative characterizations will be omitted.

An amusing application of the variational approach is the study of central configurations of maximal dimension. For any configuration of n-bodies, the centered position space has $\operatorname{dim} C(x) \leq n-1$. We will look for CC's with $\operatorname{dim} C(x)=n-1$.

Proposition 11. The only central configuration of n-bodies with $\operatorname{dim} C(x)=$ $n-1$ is the regular n-simplex and it is a central configuration for all choices of the masses.

Proof. Without loss of generality we can consider the n-body problem in \mathbb{R}^{n-1}. The configuration space is $\mathbb{R}^{n(n-1)} \backslash \Delta$ and the centered configurations form a subspace of dimension $n(n-1)-(n-1)=(n-1)^{2}$. The subset of configurations with $\operatorname{dim} C(x)=n-1$ is an open subset. The rotation group $\mathrm{SO}(n-1)$ acts freely on this open set and we can look for critical points on the quotient space which will be a smooth manifold of dimension

$$
(n-1)^{2}-\frac{(n-1)(n-2)}{2}=\frac{n(n-1)}{2}
$$

The dimension suggests using the mutual distances $r_{i j}, 1 \leq i<j \leq n$ as local coordinates. We will look for unconstrained critical points of $U(x)+I(x)$
where we express both terms as functions of the $r_{i j}$ using (2) and (9). We get

$$
\frac{\partial U}{\partial r_{i j}}+\frac{\partial I}{\partial r_{i j}}=-\frac{m_{i} m_{j}}{r_{i j}^{2}}+\frac{2 m_{i} m_{j} r_{i j}}{m_{0}}=0 .
$$

The masses cancel out and the mutual distances are equal: $r_{i j}^{3}=m_{0} / 2$. QED
The variational characterization suggests using the gradient flow of the Newtonian potential to understand central or balanced configurations. A generic smooth function on a smooth manifold is a Morse function, i..e., it has isolated critical points which are non-degenerate. Due to the rotational symmetry, critical points of $\left.U\right|_{\mathcal{N}}$ will never be isolated. There are various approaches to eliminating the rotational symmetry, some of which will be described below. However, one point of view is to just work with the similarity classes of critical points. We can still hope for these classes to be isolated from one another or non-degenerate in some sense.

First we deal with another problematic aspect of the gradient flow, the lack of compactness. The manifold $\mathcal{N}(S)$ is compact, but the flow is only defined on the open subset $\mathcal{N}(S) \backslash \Delta$. The next result, known as Shub's lemma [40], shows that CC's and SBC's are bounded away from Δ.
Proposition 12. For fixed masses m_{1}, \ldots, m_{n} and a fixed positive definite symmetric matrix S, there is a neighborhood of Δ in $\mathcal{N}(S)$ which contains no S-balanced configurations.
Proof. Otherwise there would be some $\bar{x} \in \mathcal{N}(S) \cap \Delta$ and a sequence of SBC's $x^{k} \in \mathcal{N}(S)$ with $x^{k} \rightarrow \bar{x}$ as $k \rightarrow \infty$. The collision configuration \bar{x} defines a partition of the bodies into clusters, where m_{i}, m_{j} are in the same cluster if $\bar{x}_{i}=\bar{x}_{j}$. For k large, the bodies in each cluster will be close to each other but the clusters will be bounded away from one another.

Let $F_{i}\left(x^{k}\right)=\nabla_{i} U\left(x^{k}\right)$ be the force on the i-th body. Since x^{k} is a normalized SBC we have

$$
F_{i}=-\lambda_{k} m_{i} S x_{i}^{k} \quad \lambda_{k}=U\left(x^{k}\right) .
$$

Let $\gamma \subset\{1, \ldots, n\}$ be the set of subscripts of one of the the clusters. Then

$$
\sum_{i \in \gamma} F_{i}=-\lambda_{k} S \sum_{i \in \gamma} m_{i} x_{i}^{k} \rightarrow-\lambda_{k} S m_{\gamma} \bar{x}_{\gamma}
$$

as $k \rightarrow \infty$ where m_{γ} is the total mass of the cluster and \bar{x}_{γ} is the common value of the limiting positions $\bar{x}_{i}, i \in \gamma$. On the other hand, we can split this sum as

$$
\sum_{i \in \gamma} F_{i}=\sum_{\substack{i, j \in \gamma \\ i \neq j}} F_{i j}+\sum_{\substack{i \in \gamma \\ l \notin \gamma}} F_{i l}
$$

where $F_{i j}=\frac{m_{i} m_{j}\left(x_{j}-x_{i}\right)}{r_{i j}^{3}}$ is the force on body i due to body j. The first sum is identically zero and the second is bounded by definition of cluster.

Now $\lambda_{k}=U\left(x^{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$. Comparing the two formulas and using the fact that S is nonsingular we find that $\bar{x}_{\gamma}=0 \in \mathbb{R}^{d}$. Since this holds
for every cluster, there could only be one cluster and its limiting position would be at the origin. But this contradicts the normalization condition $I_{S}(\bar{x})=1$.

QED
It follows from Shub's lemma that if the similarity classes of CC's or SBC's are isolated then there are only finitely many of them. To see this, let U denote a neighborhood of Δ in $\mathcal{N}(S)$ which contains no SBC's. Since the complement $\mathcal{N}(S) \backslash U$ is compact, a hypothetical infinite sequence of distinct, similarity classes would have normalized representatives with a convergent subsequence. The limiting configuration would be a non-isolated $S B C$.

If we allow the masses to vary, it is possible to find a sequence of CC's \bar{x}_{k} converging to Δ. This idea was introduced by Xia in [46] and developed in [28]. The masses in each nontrivial cluster all tend to zero. The limiting shapes of the clusters are governed by equations similar to the CC equation.

It is interesting to classify CC's and SBC's by their Morse index. Recall that if x is a critical point of a smooth function V on a manifold \mathcal{N}, there is a Hessian quadratic form on the tangent space $T_{x} \mathcal{N}$ which is given in local coordinates by the symmetric matrix of second partial derivatives:

$$
H(x)(v)=v^{T} D^{2} V(x) v
$$

Alternatively, if $\gamma(t)$ is any smooth curve in \mathcal{N} with $\gamma(0)=x$ and $\gamma^{\prime}(0)=v$ then

$$
H(x)(v)=\left.\frac{1}{2} \frac{d^{2}}{d t^{2}} V(\gamma(t))\right|_{t=0}
$$

The Morse index $\operatorname{ind}(x)$ is the maximum dimension of a subspace of $T_{x} \mathcal{N}$ on which $H(x)$ is negative-definite. The nullity is the dimension of

$$
\operatorname{ker} H(x)=\left\{v: H(q)(v, w)=0 \text { for all } w \in T_{x} \mathcal{N}\right\}
$$

where $H(x)(v, w)=v^{T} D^{2} V(x) w$ is the symmetric bilinear form associated to $H(x)$. We are interested in the function $V=\left.U\right|_{\mathcal{N}(S)}$ given by restricting the Newtonian potential to the normalized configuration space.

Instead of working in local coordinates, we want to represent the Hessian by a $d n \times d n$ matrix, also called $H(x)$, whose restriction to $T_{x} \mathcal{N}(S)$ gives the correct values.

Proposition 13. The Hessian of $V: \mathcal{N}(S) \rightarrow \mathbb{R}$ at a critical point x is given by $H(x)(v)=v^{T} H(x) v$ where $H(x)$ is the $d n \times d n$ matrix

$$
\begin{equation*}
H(x)=D^{2} U(x)+U(x) \hat{S} M \tag{46}
\end{equation*}
$$

Proof. A critical point of V is also an unconstrained critical point of $G(x)=$ $\sqrt{I_{S}(x)} U(x)$ in $\mathbb{R}^{d n}$. Since $\left.G\right|_{\mathcal{N}(S)}=\left.U\right|_{\mathcal{N}(S)}$, their Hessians on $T_{x} \mathcal{N}(S)$ agree.

To calculate $D^{2} G$ first recall that $I_{S}(x)=x^{T} \hat{P}^{T} \hat{S} M \hat{P} x$. Using (45) we find for any vector $w \in \mathbb{R}^{d n}$,

$$
D I_{S}(x) w=2 x^{T} \hat{P}^{T} \hat{S} M \hat{P} w
$$

Hence

$$
D G(x) w=I_{S}(x)^{\frac{1}{2}} D U(x) w+I_{S}(x)^{-\frac{1}{2}} U(x) x^{T} \hat{P}^{T} \hat{S} M \hat{P} w .
$$

We are only interested in computing vectors $D^{2} G(x)(v, w)$ where $v, w \in$ $T_{x} \mathcal{N}(S)$. In that case we have

$$
I_{S}(x)=1 \quad \hat{P} v=v \quad x^{T} \hat{P}^{T} \hat{S} M \hat{P} v=0
$$

and analogous equations for w. Differentiating G again and using these equations gives

$$
D^{2} G(x)(v, w)=D^{2} U(x)(v, w)+U(x) v^{T} \hat{S} M w
$$

as claimed.
QED
It is straightforward to calculate the $d n \times d n$ matrix $D^{2} U(x)$ with the result

$$
D^{2} U(x)=\left[\begin{array}{cccc}
D_{11} & D_{12} & \ldots & D_{1 n} \tag{47}\\
D_{21} & D_{12} & \ldots & D_{2 n} \\
\vdots & & & \vdots
\end{array}\right]
$$

where the $d \times d$ blocks are

$$
D_{i j}=\frac{m_{i} m_{j}}{r_{i j}^{3}}\left(I-3 u_{i j} u_{i j}^{T}\right), \quad u_{i j}=\frac{x_{i}-x_{j}}{r_{i j}} \quad \text { for } i \neq j
$$

and

$$
D_{i i}=-\sum_{j \neq i} D_{i j} .
$$

Due to the rotational symmetry, CC's are always degenerate as critical points. The following result describes the minimal degeneracy.

Proposition 14. Let $x \in \mathcal{N}(S)$ be a CC or SBC in \mathbb{R}^{d}. Then the nullity of x as a critical point $\left.U\right|_{\mathcal{N}(S)}$ satisfies

$$
\begin{equation*}
\operatorname{null}(x) \geq \frac{d(d-1)}{2}-\frac{k(k-1)}{2} \quad k=d-\operatorname{dim}(x)=d-\operatorname{dim} \mathcal{C}(x) . \tag{48}
\end{equation*}
$$

Proof. The formula just gives the dimension of the subspace of $T_{x} \mathcal{N}$ consisting of tangent vectors to the action of the rotation group, i.e., the subspace

$$
\{v=\alpha x: \alpha \in \operatorname{so}(d)\} .
$$

To see this, first note that the manifold $\mathcal{N}(S)$ is rotation invariant. For any curve of rotations $Q(t) \in \mathrm{SO}(d)$ with $Q(0)=I$ the vector

$$
\left.\dot{Q}(t) x\right|_{t=0}=\alpha x \in T_{x} \mathcal{N}(S) .
$$

But x is stabilized by rotations which fix the subspace $\mathcal{C}(S)$. This stabilizer is isomorphic to the rotation group of the orthogonal complement $\mathcal{C}(S)^{\perp}$ which has dimension k.

For SBC's the corresponding minimal nullity will depend on how the rotation group acts on the symmetric matrix S. If S has distinct eigenvalues, it is possible for SBC's to be non-degenerate. For example, recall that for masses $m_{1}=m_{2}=1$ and $m_{3}>0$ any isosceles triangle is balanced with the eigenvalues of S varying with the shape. One can check using computer a algebra system that generic choices of isosceles shape lead to non-degenerate SBC's.

In all cases, it is natural to call a critical point non-degenerate if it's nullity is as small as possible given the rotational symmetry.
Definition 5. A $C C$ or $S B C$ in \mathbb{R}^{d} is non-degenerate if the nullity of the corresponding critical point is as small as possible consistent with the rotational symmetry. For CC's this means that equality should hold in (48).

For example in \mathbb{R}^{3} a non-degenerate collinear CC has nullity 2, while non-degenerate planar and spatial CC's have nullity 3 .

9. Collinear Central Configurations

The first central configurations were discover by Euler in 1767 [12]. He studied the collinear three-body problem where he found collinear central configurations and the corresponding homothetic motions. Moulton investigated the central configurations of the collinear n-body problem in 1910 [31]. The results are definitive in contrast to the state of the theory for $d \geq 2$. This section is devoted to proving Moulton's theorem:

Proposition 15. Given masses $m_{i}>0$, there is a unique normalized collinear central configuration for each ordering of the masses along the line.

Note that when $d=1$ there is no difference between CC's and SBC's due to the lack of variety in 1×1 symmetric matrices.

It is instructive to start with Euler's case $n=3$. The normalized configuration space

$$
\mathcal{N}=\left\{x \in \mathbb{R}^{3}: m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}=0, m_{1} x_{1}^{2}+m_{2} x_{2}^{2}+m_{3} x_{3}^{2}=m_{0}\right\}
$$

is the curve of intersection of a plane and an ellipsoid. The collision set consist of three planes:

$$
\Delta=\left\{x_{1}=x_{2}\right\} \cup\left\{x_{1}=x_{3}\right\} \cup\left\{x_{2}=x_{3}\right\}
$$

which divide the curve into 6 arcs corresponding to the different orderings of the three masses along the line (see figure 3). Since $U \rightarrow \infty$ at these points, there must be at least one critical point in each of the arcs. To see that there is only one requires more work.

The three mutual distances provide convenient coordinates, but we need to subject them to a collinearity constraint. If we fix the ordering of the bodies to be $x_{1}<x_{2}<x_{3}$ then the constraint is $r_{12}+r_{23}-r_{13}=0$. Looking for critical points of the homogeneous function $F=U\left(r_{i j}\right)^{2} I\left(r_{i j}\right)$ with this
constraint and then normalizing by setting $r_{12}=r, r_{13}=1, r_{23}=1-r$ gives a fifth-degree polynomial equation for r :

$$
\begin{align*}
\left(m_{2}+m_{3}\right) r^{5} & +\left(2 m_{2}+3 m_{3}\right) r^{4}+\left(m_{2}+3 m_{3}\right) r^{3} \tag{49}\\
& -\left(3 m_{1}+m_{2}\right) r^{2}-\left(3 m_{1}+2 m_{2}\right) r-\left(m_{1}+m_{2}\right)=0
\end{align*}
$$

Fortunately there is a single sign changes so Descartes' rule of signs implies there is a unique positive real root. Of course there is no simple formula for how this root changes as a function of the masses. Euler's example is a shot over the bow about the CC equation. Even in the simplest nontrivial case, finding CC's for given masses involves solving complicated polynomial equations. Figure 2 shows a surface defined by Euler's quintic when one of the masses is normalized to 1 . The surface lies over the mass plane in a complicated way making the uniqueness result for fixed positive masses all the more remarkable.

Figure 2. Surface defined by Euler's quintic equations in the product space of masses and configurations. Two mass parameters (horizontal) and one configuration variable r (vertical). Fixing the masses means looking for intersections of the surface with a vertical fiber, here a line segment. For positive masses, the segment cuts the surface just once.

Before moving on to the proof of Moulton's theorem we will have a look at the geometry of the next case, $n=4$. This time \mathcal{N} is the intersection

Figure 3. \mathcal{N} for the collinear three-body problem is the boundary circle of the shaded disk which represents the set $I \leq 1$ in the plane of centered configurations. Δ intersects this plane in three lines which divide the circle into six arcs, one for each ordering of the bodies along the line.
of a hyperplane and an ellipsoid in \mathbb{R}^{4}. So it is a two-dimensional surface diffeomorphic to \mathbf{S}^{2}. There are six collision planes which divide the sphere into $4!=24$ triangles. Figure 4 shows the how the collision planes divide the sphere.

Proof of Moulton's theorem. The collision set Δ divides the ellipsoid \mathcal{N} of normalized centered configurations into n ! components, one for each ordering of the bodies along the line. Let \mathcal{V} denote any one of these components. \mathcal{V} is an open set whose boundary is contained in Δ. The Newtonian potential gives a smooth function $\left.U\right|_{\mathcal{V}}: \mathcal{V} \rightarrow \mathbb{R}$ and $U(x) \rightarrow \infty$ as $x \rightarrow \partial \mathcal{V}$. Hence $\left.U\right|_{\mathcal{V}}$ attains its minimum at some $x_{0} \in \mathcal{V}$ and x_{0} is a CC with the given ordering of the bodies along the line.

Instead of working on the normalized space where $I(x)=1$ we can study the function $F(x)=U(x)+I(x)$ on the cone $\tilde{\mathcal{V}}$ of all rays through the origin passing through \mathcal{V} (in figure 3 this would be an infinite triangular wedge based on one of the six arcs). Let $x, y \in \tilde{\mathcal{V}}$ and consider a line segment $p(t)=(1-t) x+t y, 0 \leq t \leq 1$. Note that since the ordering is fixed, the sign of $p_{i}(t)-p_{j}(t)=(1-t)\left(x_{i}-x_{j}\right)+t\left(y_{i}-y_{j}\right)$ is equal to the common sign of $x_{i}-x_{j}$ and $y_{i}-y_{j}$. It follows that $p(t) \in \tilde{\mathcal{V}}$ for all t and so $\tilde{\mathcal{V}}$ is a convex set. We will show that if $x \neq y$ then $F(p(t))$ has a strictly positive second derivative. It follows that x, y cannot both be critical points of $F(x)$.

Figure 4. \mathcal{N} for the collinear four-body problem. The collision planes divide the sphere into triangles representing the possible orderings of the bodies.

First consider $F\left(r_{i j}\right)$ as a function of the mutual distances $r_{i j}$ on $\left(\mathbb{R}^{+}\right)^{\frac{n(n-1)}{2}}$. We have

$$
\frac{\partial^{2} F}{\partial r_{i j}^{2}}=\frac{2 m_{i} m_{j}}{r_{i j}^{3}}+2 m_{i} m_{j}>0 .
$$

Now since the configurations x, y are collinear, the mutual distances reduce to $r_{i j}(t)=\left|p_{i}(t)-p_{j}(t)\right|$ and as the ordering is constant along the segment, this is a linear function of t. It follows that $F(p(t))^{\prime \prime}$ is a sum of terms

$$
\frac{\partial^{2} F}{\partial r_{i j}^{2}}(p(t))\left(r_{i j}^{\prime}(t)\right)^{2}
$$

These terms are all non-negative and at least one is positive if $x \neq y$. QED
Next we will take a look at the Hessian $H(x)$ of a collinear CC. Using the rotation invariance of U we get

$$
H(Q x)=Q^{T} H(x) Q
$$

where $H(x)$ is given by (46) and $Q \in \mathrm{SO}(d)$ is any rotation. It follows that the index and nullity are unchanged by such rotations. If x is collinear, we can therefore assume that all of the bodies have positions $x_{j} \in \mathbb{R}^{1} \times$ $0^{d-1} \subset \mathbb{R}^{d}$. Then the unit vectors $u_{i j}$ appearing in the formula (47) are all multiples of $e_{1}=(1,0, \ldots, 0)$. It follows that if we permute the components of configuration vectors into groups of n with all of the e_{1} components first, the e_{2} components next, etc., then $D^{2} U(x)$ will have a block-diagonal form

$$
D^{2} U(x)=\operatorname{diag}(-2 \tilde{A}, \tilde{A}, \ldots, \tilde{A})
$$

where

$$
\tilde{A}=\left[\begin{array}{cccc}
\tilde{A}_{11} & \frac{m_{1} m_{2}}{r_{12}^{3}} & \cdots & \frac{m_{1} m_{n}}{r_{1 n}^{3}} \\
\frac{m_{1} m_{2}}{r_{12}^{3}} & \tilde{A}_{22} & \cdots & \frac{m_{2} m_{n}}{r_{2 n}^{3}} \\
\vdots & & & \vdots \\
\frac{m_{1} m_{n}}{r_{1 n}^{3}} & \frac{m_{2} m_{n}}{r_{2 n}^{3}} & \cdots & \tilde{A}_{n n}
\end{array}\right] \quad \tilde{A}_{j j}=-\sum_{i \neq j} \tilde{A}_{i j}=-\sum_{i \neq j} \frac{m_{i}}{r_{i j}^{3}} .
$$

Note that \tilde{A} is just the symmetric matrix $A(X) M$ from section 4 .
Let $v=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{d}\right)^{T}$ denote a vector in $\mathbb{R}^{d n}$ with its coordinates permuted into groups of n as described above. Vectors of the form $v=$ $\left(\xi_{1}, 0, \ldots, 0\right)^{T}$ will be called collinear vectors and those of the form $v=$ $\left(0, \xi_{2}, \ldots, \xi_{n}\right)^{T}$ normal vectors. We are interested in the tangent space $T_{x} \mathcal{N}$ to the normalized configuration space. With these coordinates the center of mass subspace, $\operatorname{ker} \hat{L} M$ is given by

$$
m \cdot \xi_{i}=0 \quad i=1, \ldots, d
$$

where $m \in \mathbb{R}^{n}$ is the mass vector. Since x is collinear, the equation $D I(x) v=$ 0 affects only the first vector ξ_{1} :

$$
m_{1} x_{11} \xi_{11}+\ldots+m_{n} x_{n 1} \xi_{1 n}=0
$$

Finally, the action of the rotation group leads to a d-1-dimensional subspace of vectors in the kernel of the Hessian. A basis is given by $\omega_{2}(x), \ldots, \omega_{d}(x)$ where $\omega_{i}(x)$ is the vector whose i-th group of n coordinates is the vector of first coordinates of the configuration: $\left(x_{11}, x_{21}, \ldots, x_{n 1}\right)$. For example, $\omega_{2}(x)$ is the tangent vector at x in the direction of a rotation in the $(1,2)$ coordinate plane.
Proposition 16. Every collinear central configuration in \mathbb{R}^{d} is nondegenerate with $\operatorname{null}(x)=d-1$ and $\operatorname{ind}(x)=(d-1)(n-2)$. In the collinear tangent directions, $H(x)$ is positive definite while in the normal directions it is negative semi-definite.

Proof. We will analyze the Hessian block-by-block. The first block of the Hessian corresponds to the collinear directions and we have

$$
\xi^{T} H(x) \xi=-2 \xi^{T} \tilde{A} \xi+U(x) \xi^{T} M \xi
$$

where M is the $n \times n$ version of the mass matrix. We showed in section 4 that the matrix $\tilde{A}=A M$ is negative semi-definite, so both terms here are nonnegative and the second is strictly positive for nonzero vectors. Therefore the collinear part of the Hessian is positive definite.

For each of the other blocks we have

$$
\xi^{T} H(x) \xi=\xi^{T} \tilde{A} \xi+U(x) \xi^{T} M \xi
$$

The terms are of different signs and it is a subtle problem to see which is dominant. The following proof, due to Conley, appears in [34].

Instead of finding the index and nullity of $H(x)$ we will find the number of negative and zero eigenvalues of the linear map with matrix

$$
M^{-1} H(x)=M^{-1} \tilde{A}+U(X) I
$$

It is possible to guess two eigenvalues and eigenvectors. Let $u_{1}=[1 \ldots 1]^{T}$. Since the row sums of \tilde{A} are zero we have

$$
M^{-1} H u_{1}=\lambda_{1} u_{1} \quad \lambda_{1}=U(x)>0 .
$$

However, this vector is orthogonal to the zero center of mass subspace so is not relevant for our index and nullity computation. Next we have $u_{2}=x=$ $\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T}$, where we have simplified the notation so $x_{i} \in \mathbb{R}$ denotes the position of the i-th body along the line. Then a short computation gives

$$
M^{-1} \tilde{A} u_{2}=M^{-1} \nabla U(x)
$$

where ∇ is the gradient in \mathbb{R}^{n}. Since x is a normalized CC we have $M^{-1} \nabla U(x)=-U(x) x=-U(x) u_{2}$ and so

$$
M^{-1} H u_{2}=\left(M^{-1} \tilde{A}+U(x) I\right) u_{2}=-U(x) u_{2}+U(x) u_{2}=0 .
$$

In other words u_{2} is an eigenvector with eigenvalue $\lambda_{2}=0$. We have one such null vector for each of the last $d-1$ blocks. Note that u_{2} is the vector $\omega_{i}(x)$ tangent to the rotation group action. If we can show that the other $n-2$ eigenvalues of $M^{-1} H$ are strictly negative, the proposition will be proved.

Conley's proof uses the dynamics of the linear flow of the differential equation

$$
\dot{\xi}=M^{-1} \tilde{A} \xi
$$

Every linear flow determines a flow on the space of lines through the origin and the eigenvector lines are exactly the equilibrium points. Moreover the equilibrium corresponding to the largest eigenvector is an attractor for this projectivized flow. If we can show that the line of the eigenvector $u_{2}=x$ is an attractor, then it follows that all of the other eigenvalues of $M^{-1} \tilde{A}$ are strictly less than $-U(x)$ and so all of the other eigenvalues of $M^{-1} H(x)$ are negative.

Suppose that the ordering of the bodies along the line is $x_{1}<x_{2}<\ldots<$ x_{n}. Define a cone in the zero center of mass subspace by

$$
K=\left\{\xi: m \cdot \xi=0, \xi_{1} \leq \xi_{2} \leq \ldots \leq \xi_{n}\right\} .
$$

This cone contains the line spanned by the eigenvector u_{2} in its interior and does not contain any two-dimensional subspaces. We will show that the flow carries K strictly inside itself. It follows that for the projectivized flow, u_{2} is an attractor.

Now the boundary of K is the set where one or more of the inequalities in the definition is an equality. Consider a boundary point where for some $i<j$ we have

$$
u_{i-1} \leq u_{i}=\ldots=u_{j} \leq u_{j+1}
$$

The differential equation gives

$$
\dot{u}_{i}=\sum_{k \neq i} \frac{m_{k}}{r_{i k}^{3}}\left(u_{k}-u_{i}\right) \quad \dot{u}_{j}=\sum_{k \neq j} \frac{m_{k}}{r_{j k}^{3}}\left(u_{k}-u_{j}\right)
$$

Since $u_{i}=u_{j}$ the difference of these can be written:

$$
\dot{u}_{j}-\dot{u}_{i}=\sum_{k \neq i, j} m_{k}\left(u_{k}-u_{i}\right)\left[\frac{1}{r_{j k}^{3}}-\frac{1}{r_{i k}^{3}}\right]
$$

Every term in this sum is non-negative:

$$
\begin{array}{lll}
\text { If } k<i & u_{k}-u_{i} \leq 0 & \frac{1}{r_{j k}^{3}}-\frac{1}{r_{i k}^{3}}<0 \\
\text { If } i<k<j & u_{k}-u_{i}=0 & \\
\text { If } j<k & u_{k}-u_{i} \geq 0 & \frac{1}{r_{j k}^{3}}-\frac{1}{r_{i k}^{3}}>0
\end{array}
$$

Moreover, not all of the terms can vanish since otherwise u would be a multiple of $\left[\begin{array}{lll}1 & \ldots & 1\end{array}\right]^{T}$ which is not in the zero center of mass space. It follows that at this boundary point $\dot{u}_{j}-\dot{u}_{i}>0$ so the point moves strictly inside the cone under the linear flow. It follows that the line determined by u_{2} is an attractor as required.

10. Morse Indices of Non-Collinear Central Configurations

Unfortunately, not much is known about the Morse indices of non-collinear CC's. Here we will just get a few weak estimates.

Proposition 17. Suppose x is a central configuration of the n-body problem in \mathbb{R}^{d} with $\operatorname{dim}(x)<\min (d, n-1)$. Then the Morse index of the corresponding critical point satisfies $\operatorname{ind}(x) \geq d-\operatorname{dim}(x)$. In particular, the critical point is not a local minimum of $\left.U\right|_{\mathcal{N}}$.

As a corollary we get the existence of CC's of the n-body problem of all possible dimensions.
Corollary 2. For the n-body problem in \mathbb{R}^{d} and for any k with $1 \leq k \leq$ $\min (d, n-1)$ there exists at least one central configuration with $\operatorname{dim}(x)=k$.

Proof. We have seen that $\left.U\right|_{\mathcal{N}}$ achieves a minimum at some CC x and it follows from the proposition that $\operatorname{dim}(x)=\min (d, n-1)$. If $1 \leq k<$ $\min (d, n-1)$ then we can restrict to a subspace of \mathbb{R}^{d} of dimension k and get a CC of dimension $\min (k, n-1)=k$,

QED
Proof of the proposition. If $\operatorname{dim}(x)=k<\min (d, n-1)$ we can assume that all of the bodies have position vectors $x_{j} \in \mathcal{W}=\mathbb{R}^{k} \times 0^{d-k}$. As in the last section we get a block decomposition of the Hessian $D^{2} U(x)=$ $\operatorname{diag}\left(D^{2}\left(\left.U\right|_{\mathcal{W}}\right), \tilde{A}, \ldots, \tilde{A}\right)$ where $D^{2}\left(\left.U\right|_{\mathcal{W}}\right)$ is $n k \times n k$ tangential part and where there are $d-k$ copies of the familiar $n \times n$ block \tilde{A}. We will show that the matrix $M^{-1} \tilde{A}+U(x) I$ has at least one negative eigenvalue whose eigenvector has zero center of mass. Since the eigenvalue in the u_{1}-direction normal to the center of mass is $\lambda_{1}=U(x)$, it suffices to show that $\operatorname{tr}\left(M^{-1} \tilde{A}+\right.$ $U(x) I)<-U(x)$ or equivalently

$$
\tau=-\operatorname{tr} M^{-1} \tilde{A}>(n-1) U(x)
$$

Now

$$
\tau=\sum_{i} \sum_{j \neq i} \frac{m_{j}}{r_{i j}^{3}}=\sum_{\substack{(i, j) \\ i<j}} \frac{m_{i}+m_{j}}{r_{i j}^{3}} .
$$

The problem, of course, is that we do not have much control over the mutual distances. All we know is that we are at some CC. The following approach is due to Albouy [2].

We will use the reduced version of the CC equation (29). Viewing B as a bilinear form on the hyperplane \mathcal{D}^{*} we can use the matrix representative \hat{B} from (27). For each pair of indices $i<j$, the vector $e_{i}-e_{j} \in \mathcal{D}^{*}$ where e_{i}, e_{j} are standard basis vectors in \mathbb{R}^{n}. From (29) we have

$$
\left(e_{i}-e_{j}\right)^{T}(\hat{B} A+\lambda \hat{B})\left(e_{i}-e_{j}\right)=0 \quad i<j .
$$

We have $\left(e_{i}-e_{j}\right)^{T} \hat{B}\left(e_{i}-e_{j}\right)=r_{i j}^{2}$. The other term is more complicated but with some effort we arrive at
$2 \lambda=\frac{2\left(m_{i}+m_{j}\right)}{r_{i j}^{3}}+\sum_{k \neq i, j} m_{k}\left(\frac{1}{r_{i k}^{3}}+\frac{1}{r_{j k}^{3}}\right)+\sum_{k \neq i, j} m_{k}\left(r_{i k}^{2}-r_{j k}^{2}\right)\left(\frac{1}{r_{i k}^{3}}-\frac{1}{r_{j k}^{3}}\right)$.
Note that the two parentheses in the last sum always have opposite signs unless they are both zero. So the sum is strictly negative unless all of the mutual distances are equal. However, this would mean that the configuration was the regular simplex with $\operatorname{dim}(x)=n-1$. By hypothesis, this is not the case, so we can drop the last sum to get a strict inequality. Summing this inequality over all pairs $i<j$ gives

$$
n(n-1) \lambda<n \tau .
$$

Since x is a normalized CC we have $\lambda=U(x)$ and this is exactly the inequality we need.

QED

Upper bounds on the index are also of interest. In dimension $d=2$, Palmore showed that the collinear CC's have the maximum possible index, namely $n-2$. For $d=3$ it is known, at least, that $\left.U\right|_{\mathcal{N}}$ does not have any local maxima. See $[26,29]$ for these results. I don't know if this is still true for $d>3$.

11. Morse Theory for CC's and SBC's

In this section we will describe how to use Morse theory to prove existence of CC's. This approach was developed by Palmore [35] for the planar n-body problem and extended to three dimensions using equivariant Morse theory by Pacella [34]. An alternative approach to the three-dimensional case is due to Merkel [24].

Recall that central configurations in $\mathbb{R}^{d}, d \geq 2$, correspond to degenerate critical point of $\left.U\right|_{\mathcal{N}}$ due to the action of the symmetry group $\mathrm{SO}(d)$. In the planar case, $\mathrm{SO}(2) \simeq \mathbf{S}^{1}$ acts freely on $\mathcal{N} \backslash \Delta$ and we can think of U as a smooth function on the quotient manifold

$$
\mathcal{M}=(\mathcal{N} \backslash \Delta) / \mathrm{SO}(2)
$$

We can still define such a quotient space when $d>2$ but due to the nonfree action of $\mathrm{SO}(d)$, it will not be a manifold. In section 8 , we defined the concept of non-degeneracy for CC's with the symmetry group in mind, so using this terminology, a non-degenerate CC of the planar n-body problem determines a non-degenerate critical point in the manifold \mathcal{M}.

A generic smooth function on a manifold is a Morse function, that is, all of its critical points are non-degenerate. But it is difficult to actually verify this for particular functions like the Newtonian potential. From proposition 16 we know that the collinear CC's are non-degenerate.

When $n=3$ the only non-collinear CC's are the equilateral triangles and these are non-degenerate. The same hold for the regular simplex in the n-body problem.

Proposition 18. For every choice of n positive masses, the regular simplex is a non-degenerate central configuration. It is a non-degenerate minimum of the potential in the quotient space \mathcal{M}.

Proof. Suppose $d=n-1$ and forget about the normalization temporarily. $\mathrm{SO}(d)$ acts freely on the open subset of $\mathbb{R}^{n(n-1)} \backslash \Delta$ consisting of configurations with $\operatorname{dim}(x)=n-1$ and we can use the mutual distances $r_{i j}$ as local coordinates in the corresponding open subset of the quotient space under rotations and translations. In these coordinates, the matrix of second derivatives of $F=I U^{2}$ is diagonal and the partial derivatives $\partial^{2} F / \partial r_{i j}^{2}$ are all positive. Restricting to the tangent space to the normalized configurations gives a strictly positive Hessian.

QED
It follows that for the planar three-body problem and for all choices of the three masses, the Newtonian potential determines a Morse function on
\mathcal{M}. The space of normalized triangles is a three-dimensional ellipsoid. The quotient space under the rotation group is diffeomorphic to \mathbf{S}^{2} and is called the shape sphere since it represents all possible shapes of triangles in the plane up to translation, rotation and scaling. \mathcal{M} is the shape sphere with three collision shapes deleted. Figure 5 shows the level curves of the potential for two choices of the masses. The poles represent the equilateral triangles which are minima. On the equator, which represents the collinear shapes, there are the three collinear central configurations found by Euler, which are saddle points.

Figure 5. \mathcal{M} for the planar three-body problem is the shape sphere. The Newtonian potential determines a Morse function with five critical points, shown here for the case of equal masses (left) and masses 1, 2, 10 (right).

For $n>3, d \geq 2$ it is much harder to check whether the critical points are non-degenerate. For the planar four-body problem Palmore showed that degenerate central configurations can occur for some choices of the masses and this is related to bifurcations in the number of central configurations as the masses are varied. Simo investigated the bifurcations numerically [41]. In section 14 we will show that for generic choices of the masses in the planar four-body problem the potential determines a Morse function.

Now we will see what Morse theory tells us about the number of central configurations in the plane, taking the non-degeneracy of the critical points as an assumption. Morse theory is based on the gradient flow induced by a function on a Riemannian manifold. In our case the manifold is the quotient manifold \mathcal{M} where we can use the restriction of the mass inner product as the Riemannian metric. First consider the gradient flow on $\mathcal{N} \backslash \Delta$. If the masses are fixed, Shub's lemma allows us to restrict to a compact set of the form $K=\left\{x \in \mathcal{N}: U(x) \leq U_{0}\right\}$ for some sufficiently large U_{0}. By definition, the gradient vectorfield of $\left.U\right|_{\mathcal{N}}$ with respect to an inner product is the unique tangent vectorfield $\tilde{\nabla} U(x)$ with the property that

$$
\langle\tilde{\nabla} U(x), W\rangle=D U(x) W \quad W \in T_{x} \mathcal{N} .
$$

Using the mass inner product $\langle\xi, \eta\rangle=\xi^{T} M \eta$, one can check that the gradient vectorfield is the restriction to \mathcal{N} of

$$
\tilde{\nabla} U(x)=M^{-1} \nabla U(x)+U(x) x .
$$

By rotation invariance, this vectorfield determines a gradient flow on the quotient space \mathcal{M}. Orbits of the gradient flow cross the level sets of U orthogonally in the direction of increasing U. Orbits starting in the compact set K will continue to exist at least until they reach the exit level $U=U_{0}$.

The Morse inequalities relate the indices of the critical points of a Morse function on a manifold \mathcal{M} to the topology of the manifold. They are most easily expressed in terms of polynomial generating functions. Define a Morse polynomial

$$
M(t)=\sum_{k} \gamma_{k} t^{k} \quad \gamma_{k}=\text { number of critical points of index } k
$$

and the Poincaré polynomial

$$
P(t)=\sum_{k} \beta_{k} t^{k} \quad \beta_{k}=k \text {-th Betti number of the manifold. }
$$

By the Betti numbers, we mean the ranks of the homology groups $H_{k}(\mathcal{M}, \mathbb{R})$ with real (or rational) coefficients. Then the Morse inequalities can be written

$$
\begin{equation*}
M(t)=P(t)+(1+t) R(t) \tag{50}
\end{equation*}
$$

where $R(t)$ is some polynomial with non-negative integer coefficients. In particular, the Betti number β_{k} is a lower bound on the number of critical points of index k.

It turns out the the manifold \mathcal{M} has a complicated topology so the Morse inequalities give interesting results. Recall that for the n-body problem in \mathbb{R}^{d}, the space \mathcal{N} of normalized configurations is an ellipsoid of dimension $d(n-1)-1$. It is the deletion of collision set Δ which produces the topological complexity.

Proposition 19. For the n-body problem in \mathbb{R}^{d}, the Poincaré polynomial of $\mathcal{N} \backslash \Delta$ is

$$
\tilde{P}(t)=\left(1+t^{d-1}\right)\left(1+2 t^{d-1}\right) \ldots\left(1+(n-1) t^{d-1}\right) .
$$

For example in the planar three-body problem we have

$$
\tilde{P}(t)=(1+t)(1+2 t)=1+3 t+2 t^{2} .
$$

Proof. It suffices to find the Betti number of the unnormalized space $\mathbb{R}^{d n} \backslash \Delta$. To see this note that the normalization of the center of mass and moment of inertia give a diffeomorphism

$$
\mathbb{R}^{d n} \backslash \Delta \simeq \mathbb{R}^{d} \times \mathbb{R}^{+} \times(\mathcal{N} \backslash \Delta)
$$

Now Künneth's theorem from algebraic topology show that the Poincaré polynomial of a product space is the product of the Poincaré polynomials of
the factors. Here the first two factors are homologically trivial with Poincaré polynomials equal to 1 .

The computation for $\mathbb{R}^{d n} \backslash \Delta$ is by induction on n. For $n=1$ we have

$$
\mathbb{R}^{d} \backslash \Delta=\mathbb{R}^{d} \backslash\{0\} \simeq \mathbb{R}^{+} \times \mathbf{S}^{d-1}
$$

and we have the Poincaré polynomial of a sphere, $\tilde{P}(t)=\left(1+t^{d-1}\right)$. For $n>1$ we have a fiber bundle $\pi: \mathbb{R}^{d n} \backslash \Delta \rightarrow \mathbb{R}^{d(n-1)} \backslash \Delta$ where the projection just forgets the n-th body:

$$
\pi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n-1}\right)
$$

The fiber over a point $\left(x_{1}, \ldots, x_{n-1}\right)$ is just $\mathbb{R}^{d} \backslash\{n-1$ points $\}$. Now this fiber bundle is not a product but it does satisfy certain topological conditions which guarantee that the Poincaré polynomials multiply. First, there is a cross-section map $\sigma:: \mathbb{R}^{d(n-1)} \backslash \Delta \rightarrow \mathbb{R}^{d n} \backslash \Delta$ with $\pi \circ \sigma=i d$. For example we could let the n-th body of $\sigma\left(x_{1}, \ldots, x_{n-1}\right)$ be at the point obtained by translating the barycenter of the other $n-1$ bodies a distance greater than the maximum distance between these bodies in the direction of the first coordinate axis.. In addition, the fundamental group of the base acts trivially on the fiber (for $d \neq 2$ the base is simply connected). In any case we find that we go from the Poincaré polynomial for $(n-1)$ bodies to the polynomial for n bodies by multiplying by the Poincaré polynomial of the fiber, namely $1+(n-1) t^{d-1}$.

QED
Next we restrict attention to the planar problem and pass to the quotient space \mathcal{M} under the \mathbf{S}^{1} action. The image of the normalized space $\mathcal{N} \simeq \mathbf{S}^{2 n-3}$ is the diffeomorphic to the complex projective space $\mathbb{C P}(n-2)$ and the projection is a nontrivial circle bundle. But when we delete the collision set, the bundle becomes trivial. For example, there is a global cross-section to the circle action consisting of all non-collision configuration where the vector from x_{1} to x_{2} is the direction of the positive first-coordinate axis. It follows that in the planar case

$$
\mathcal{N} \backslash \Delta \simeq \mathbf{S}^{1} \times \mathcal{M}
$$

Proposition 20. For the n-body problem in \mathbb{R}^{2}, the Poincaré polynomial of the rotation-reduced, normalized configuration space is

$$
P(t)=(1+2 t) \ldots(1+(n-1) t) .
$$

Proof. Since $\mathcal{N} \backslash \Delta$ is product of a circle and \mathcal{M}, we have $\tilde{P}(t)=(1+t) P(t)$. Then proposition 19 with $d=2$ gives the result.

QED
For example when $n=3,4$ we have, respectively,

$$
P(t)=1+2 t \quad P(t)=(1+2 t)(1+3 t)=1+5 t+6 t^{2} .
$$

For $n=3$, the Betti numbers $\beta_{0}=1$ and $\beta_{1}=2$ describe the homology of the shape sphere with the three collision points deleted which is diffeomorphic to the twice-punctured plane.

To apply the Morse inequalities to the planar n-body problem first note that we have, after quotienting by rotations, $\frac{n!}{2}$ collinear central configurations. By proposition 16, these have Morse index $n-2$. The next result, due to Palmore, uses this information to good effect.

Proposition 21. Suppose that all of the central configurations are nondegenerate for a certain choice of masses in the planar n-body problem. Then there are at least

$$
\frac{(3 n-4)(n-1)!}{2}
$$

central configurations, of which at least

$$
\frac{(2 n-4)(n-1)!}{2}
$$

are non-collinear.
Proof. The simplest lower bound on the number of critical points is obtained by setting $t=1$ in (50):

$$
\sum_{k} \gamma_{k} \geq \sum_{k} \beta_{k}=P(1)=\frac{n!}{2}
$$

But the information about the collinear configurations mentioned above shows that in the Morse polynomial, we have $\gamma_{n-2} \geq \frac{n!}{2}$. On the other hand, the coefficient of t^{n-2} in the Poincare polynomial $P(t)$ is $\beta_{n-2}=$ $2 \cdot 3 \ldots(n-1)=(n-1)$!.

Let $R(t)=\sum_{k} r_{k} t^{k}$ be the residual polynomial in the Morse inequalities (50). Then we have

$$
r_{n-2}+r_{n-3} \geq \frac{n!}{2}-(n-1)!
$$

Setting $t=1$ in (50) now gives

$$
\sum_{k} \gamma_{k} \geq \frac{n!}{2}+2\left(r_{n-2}+r_{n-3}\right) \geq \frac{3 n!}{2}-2(n-1)!=\frac{(3 n-4)(n-1)!}{2}
$$

Subtracting $n!/ 2$ gives the non-collinear estimate.
QED
For example, when $n=3$ the Morse estimate is 5 critical points, which is exactly right. For $n=4$ we have at least 24 CC's of including the 12 collinear ones, assuming non-degeneracy. The estimates increase rapidly with n - we expect there to be many CC's.

In the non-planar case, the reduction of symmetry is more complicated and the quotient space is not a manifold. See [34, 24] for two approaches to the spatial case. We also mention the paper of McCord [23] which gives estimates based on Lyusternik-Schnirelmann theory instead of Morse theory.

Instead of pursuing this, we will just make a few remarks about what Morse theory can tell us about balanced configurations. Recall that these also admit a variational characterization as critical points of $\left.U\right|_{\mathcal{N}(S)}$ where $\mathcal{N}(S)$ is the space of normalized configurations with respect to the metric
based on the symmetric matrix $S:\langle\xi, \eta\rangle=\xi^{T} \hat{S} M \eta$. Now if we fix a symmetric matrix S with distinct eigenvalues, there is no longer any rotational symmetry and we can have non-degenerate critical points in $\mathcal{N}(S) \backslash \Delta$. The topology of this space is independent of S, so we can use the Poincaré polynomial $\tilde{P}(t)$ from proposition 19 .

This time there are more collinear configurations. If we fix any one of the d eigenlines of S we will find $n!$ collinear SBC's which are non-degenerate with Morse index $(d-1)(n-1)$. There are d eigenlines for a total of $d n$! collinear SBC's. If we knew their indices, it might be possible to use the information to get strong Morse estimates for the number of non-collinear SBC's. It seems that the proof of proposition 16 can be generalized to show that the collinear SBC's corresponding to the largest eigenvalue of S have index $(d-1)(n-1)$ which would give $\gamma_{(d-1)(n-1)} \geq n!$. Using this to estimate the residual polynomial as in the proof of proposition 21 gives a lower bound

$$
\sum_{k} \gamma_{k} \geq(3 n-1)(n-1)!
$$

but this exceeds the known count of $d n$! collinear configurations only for $d=2$.

12. Dziobek Configurations

In section 9 we studied collinear central configurations. These are at the lower end of the dimension range for an n-body configuration: $1 \leq \operatorname{dim}(x) \leq$ $n-1$. We also saw that the only CC with $\operatorname{dim}(x)=n-1$ is the regular simplex. In this section we consider the highest nontrivial dimension.

Definition 6. A Dziobek configuration is a configuration of n bodies with $\operatorname{dim}(x)=n-2$.

The physically interesting examples are collinear configurations of 3 bodies, planar but noncollinear configurations of 4 bodies and spatial but nonplanar configurations of 5 bodies. They are named after Otto Dziobek who studied the planar 4 body case [11]. We will be interested in finding Dziobek central configurations (DCC's).

We begin by studying the geometry of Dziobek configurations. We will assume that the dimension of the ambient space is $d=n-2$ so any n-body configuration is given by $x=\left(x_{1}, \ldots, x_{n}\right)$ with $x_{j} \in \mathbb{R}^{n-2}$. It is useful to associate with x an $(n-1) \times n$ augmented configuration matrix:

$$
\hat{X}=\left[\begin{array}{lll}
1 & \cdots & 1 \tag{51}\\
\hline x_{1} & \cdots & x_{n}
\end{array}\right] .
$$

This is just the configuration matrix of section 4 with a row of ones added to the top. Then it is easy to see that

$$
\operatorname{dim}(x)=\operatorname{rank} \hat{X}-1 .
$$

Note that because of the row of ones, two configurations are translation equivalent if and only if their augmented configuration matrices have the same row space or, equivalently, the same kernel.

For a Dziobek configuration we have $\operatorname{rank} \hat{X}=n-1$ and $\operatorname{dim} \operatorname{ker} \hat{X}=1$. Hence there is a nonzero vector $\Delta=\left(\Delta_{1}, \ldots, \Delta_{n}\right)$, unique up to a constant multiple, such that

$$
\begin{gather*}
\Delta_{1}+\cdots+\Delta_{n}=0 \\
x_{1} \Delta_{1}+\cdots+x_{n} \Delta_{n}=0 . \tag{52}
\end{gather*}
$$

There is a nice formula for a vector Δ satisfying (52). Let \hat{X}_{k} be the ($n-$ 1) $\times(n-1)$ matrix obtained from X by deleting the k-th column and let $\left|\hat{X}_{k}\right|$ denote its determinant. Then

$$
\begin{equation*}
\Delta=\left(\left|\hat{X}_{1}\right|,-\left|\hat{X}_{2}\right|, \ldots,(-1)^{k+1}\left|\hat{X}_{k}\right|, \ldots\right)^{T} \tag{53}
\end{equation*}
$$

is a solution to (52). Moreover, since the determinants are proportional to the volumes of the $(n-2)$-simplices of the deleted configurations, at least one of them is nonzero in the Dziobek case.

Next we will reformulate the dimension criteria above in terms of the mutual distances $r_{i j}$ or rather, their squares $s_{i j}=r_{i j}^{2}$. Using equations (52) we have,

$$
\begin{equation*}
\sum_{j} s_{i j} \Delta_{j}=\left|x_{i}\right|^{2} \sum_{j} \Delta_{j}-2 x_{i} \cdot \sum_{j} x_{j} \Delta_{j}+\sum_{j}\left|x_{j}\right|^{2} \Delta_{j}=\sum_{j}\left|x_{j}\right|^{2} \Delta_{j} \tag{1}
\end{equation*}
$$

where i is any fixed index and the sum over j runs from 1 to n (here $s_{i i}=0$). The result is independent of i and we denote it by $-\Delta_{0}$. Define the CayleyMenger matrix and determinant by

$$
C M(x)=\left[\begin{array}{cccccc}
0 & 1 & 1 & 1 & \ldots & 1 \tag{54}\\
1 & 0 & s_{12} & s_{13} & \ldots & s_{1 n} \\
1 & s_{12} & 0 & s_{23} & \ldots & s_{2 n} \\
1 & s_{13} & s_{23} & 0 & \ldots & s_{3 n} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
1 & s_{1 n} & s_{2 n} & s_{3 n} & \ldots & 0
\end{array}\right] \quad F(x)=|C M(x)|
$$

Then we have $C M(x) \Delta=0$ where now $\Delta=\left(\Delta_{0}, \Delta_{1}, \ldots, \Delta_{n}\right)$. Consequently, we have

$$
F(x)=|C M(x)|=0
$$

for any Dziobek configuration or indeed for any configuration with $\operatorname{dim}(x) \leq$ $n-2$.

To find equations for Dziobek central configurations (DCC's) begin by setting $\lambda=m_{0} \lambda^{\prime}$ in the standard equations (10). After some algebra we find for each $j=1, \ldots, n$:

$$
\begin{equation*}
\sum_{i=1}^{n} m_{i} S_{i j} x_{i}=0 \tag{55}
\end{equation*}
$$

where

$$
\begin{align*}
S_{i j} & =\frac{1}{r_{i j}^{3}}-\lambda^{\prime} \quad i \neq j \\
m_{j} S_{j j} & =-\sum_{i \neq j} m_{i} S_{i j} \tag{56}
\end{align*}
$$

Proposition 22. Let x be a Dziobek central configuration of the n-body problem, let $S_{i j}$ be given by (56) and let Δ be any nonzero solution of (52). Then there is a real number $\kappa \neq 0$ such that

$$
\begin{equation*}
m_{i} m_{j} S_{i j}=\kappa \Delta_{i} \Delta_{j} . \tag{57}
\end{equation*}
$$

Moreover, at least two of the Δ_{i} are nonzero.
Proof. Equation (55) and the second equation of (56) show that for each $j=1, \ldots, n$ the vector

$$
\left(m_{1} S_{1 j}, m_{2} S_{2 j}, \ldots, m_{n} S_{n j}\right)
$$

is a solution to equations (52). Since the solution is unique up to a constant multiple there must be constants k_{j} such that

$$
m_{i} S_{i j}=k_{j} \Delta_{i} .
$$

Since $S_{i j}=S_{j i}$, the vector $\left(k_{1}, \ldots, k_{n}\right)$ is a multiple $\kappa\left(\Delta_{1} / m_{1}, \ldots, \Delta_{n} / m_{n}\right)$ so we get (57) for some real number κ. If $\kappa=0$ or if only one of the Δ_{i} were nonzero then all of the $S_{i j}, i \neq j$ would be equal. But this only happens for the regular simplex, which is not a Dziobek configuration. QED

Multiplying two of the equations (57) gives:
Corollary 3. Let x be a Dziobek configuration and let $S_{i j}$ be given by (56). Then for any four indices $i, j, k, l \in\{1, \ldots, n\}$ we have

$$
S_{i j} S_{k l}=S_{i l} S_{k j}
$$

These equations can be used to derive some mass-independent constraints on the shapes of CC's. For example, when $n=4$ we have two independent equations of the form

$$
\left(r_{12}^{3}-\lambda^{\prime}\right)\left(r_{34}^{3}-\lambda^{\prime}\right)=\left(r_{13}^{3}-\lambda^{\prime}\right)\left(r_{24}^{3}-\lambda^{\prime}\right)=\left(r_{14}^{3}-\lambda^{\prime}\right)\left(r_{23}^{3}-\lambda^{\prime}\right)
$$

Eliminating λ^{\prime} gives a necessary condition on the distances, in addition to the vanishing of the Cayley-Menger determinant, for a configuration to be central for some choice of the masses.

13. Convex Dziobek Central Configurations

In this section we present an existence proof for convex Dziobek configurations based on ideas of Xia [48]. First we discuss the geometry of the space of convex configurations. Consider the n-body problem in \mathbb{R}^{n-2} as in section 12. The normalized configuration space \mathcal{N} is diffeomorphic to a
sphere of dimension $(n-1)(n-2)-1$. The Dziobek configurations form an open subset, but \mathcal{N} also contains configurations with $\operatorname{dim}(x)<n-2$.

For each $x \in$, let $\Delta(x)$ be the vector of determinants (53) representing, up to a factor, the ($n-2$)-dimensional volumes of its ($n-1$)-body subconfigurations. Then $\Delta: \mathcal{N} \rightarrow \mathcal{V} \subset \mathbb{R}^{n}$ where \mathcal{V} is the hyperplane $\Delta_{1}+\ldots+\Delta_{n}=0$. If x is a Dziobek configuration then at least two of the determinants Δ_{i} are nonzero and Δ determines a point $[\Delta]$ of the unit sphere $\mathbf{S}(\mathcal{V}) \simeq \mathbf{S}^{n-2}$ in \mathcal{V}. The planes $\Delta_{i}=0$ divide the sphere into components where the signs of the Δ_{i} are constant. Let $\mathbf{S}(\mathcal{V})_{0}$ denote the complement of these planes.

The signs of the variables Δ_{i} provide a geometric classification of Dziobek configurations. Suppose, for example, that $\Delta_{n} \neq 0$ so that the first $n-1$ bodies span a non-degenerate simplex in \mathbb{R}^{n-2} and the ratios $b_{i}=-\Delta_{i} / \Delta_{n}$, $i=1, \ldots, n-1$ are the barycentric coordinates of x_{n} with respect to this simplex [6]. In particular, x_{n} is in the interior of the simplex if and only if $b_{i}>0$ for $i=1, \ldots, n-1$. This provides a simple characterization of when a Dziobek configuration is non-convex, namely, we must have either exactly one $\Delta_{i}>0$ and $\Delta_{j}<0, j \neq i$ or else exactly one $\Delta_{i}<0$ and $\Delta_{j}>0, j \neq i$. Let $\mathcal{N} C D \subset \mathcal{N}$ denote the open set of non-convex Dziobek configuration.

The complement $K=\mathcal{N} \backslash \mathcal{N} C D$ is a compact set containing all of the convex Dziobek configurations. There will be some point $x \in K$ where $\left.U\right|_{K}$ achieves its minimum and we would like to conclude that x is a convex Dziobek central configuration. This entails showing that the minimum does not occur on the boundary ∂K. We will prove this for $n=4$ and get existence of planar, non-collinear convex central configurations for the fourbody problem, a result due to MacMillan and Bartky [22]. Unfortunately, there seem to be problems extending the proof to higher dimensions. To highlight the difficulties, we will split the proof into two parts. First we consider the part of ∂K consisting of Dziobek configurations. This part of the proof works for all n.

Proposition 23. Let $x \in \partial K$ be a Dziobek configuration. Then x is not the minimizer of $\left.U\right|_{K}$.
Proof. We will show that arbitrarily close to x, there are points of K with strictly smaller values of $\left.U\right|_{K}$. Instead of working with normalized configurations and $\left.U\right|_{K}$ we can forget the normalization and use the homogeneous function $F=I(x) U(x)^{2}$.

By hypothesis, there is a sequence of non-convex Dziobek configurations $x^{k} \rightarrow x$. After re-indexing we may assume that for all k, the n-th body x_{n}^{k} is contained in the interior of the simplex formed by $x_{1}^{k}, \ldots, x_{n-1}^{k}$. Taking the limit we conclude that x_{n} is contained in the boundary of the closed simplex formed by x_{1}, \ldots, x_{n-1}. Since we are assuming that x is still a Dziobek configuration, x_{1}, \ldots, x_{n-1} span a non-degenerate ($n-2$)-simplex. After re-indexing again we may assume that x_{n} is contained in the facet of this simplex spanned by x_{2}, \ldots, x_{n-1}. Let $x_{i k}, k=1, \ldots, n-2$ denote the coordinates of the bodies in the ambient space \mathbb{R}^{n-2}. After a rotation and
translation we may assume $x_{11}>0$ and $x_{i 1}=0, i=2, \ldots, n-1$. In other words all of the bodies except x_{1} lie in a coordinate plane with x_{1} strictly to the right.

Consider the distances $r_{1 k}$ from x_{1} to the other bodies. Since x_{n} is contained in the closed simplex spanned by x_{2}, \ldots, x_{n-1}, we will have $r_{1 n}<r_{1 k}$ for some $k \in\{2, \ldots, n-1\}$ and we may assume without loss of generality that $r_{1 n}<r_{12}$. Then we will see that moving x_{n} a little to the left while moving x_{2} a little to the right decreases F. Moreover these perturbed configurations are in K.

We will use mutual distance version of the moment of inertia (9) and the usual formula for $U\left(r_{i j}\right)$. Note that if we move x_{2}, x_{n} in the direction of the first coordinate axis, the derivatives of the distances $r_{i j}, 2 \leq i<j \leq n$ are all zero. Only r_{12} and $r_{1 n}$ change to first order. If we change the first coordinates of x_{2}, x_{n} by $\delta x_{21}=m_{2}^{-1} \xi$ and $\delta x_{n 1}=-m_{n}^{-1} \xi$ for some small $\xi>0$, a short computation shows that the first-order change in F is

$$
\delta F=2 I U m_{1} x_{11} \xi\left(r_{12}^{-3}-r_{1 n}^{-3}\right)
$$

where $x_{11}>0$ is the first coordinate of x_{1}. Since $r_{1 n}<r_{12}$ and $\xi>0$, we have $\delta F<0$ as required.

Next we need to consider boundary points $x \in \partial K$ with $\operatorname{dim}(x)<n-2$. It is easy to see that every configuration with $\operatorname{dim}(x)<n-2$ can be perturbed into both a convex and non-convex Dziobek configuration, hence all such lower-dimensional configurations are in ∂K. Fix a dimension $k<n-2$ and let $\mathcal{N}_{k} \subset \mathcal{N}$ be the set of configurations with $\operatorname{dim}(x) \leq k$. Since $\mathcal{N}_{k} \subset \partial K \subset K$ it follows that if $x \in \mathcal{N}_{k}$ is a minimizer of $\left.U\right|_{K}$ then it is also a minimizer of $\left.U\right|_{\mathcal{N}_{k}}$ and is therefore a lower-dimensional CC. Therefore, in order to rule out such boundary points we need to understand how the potential changes when we perturb x to a convex Dziobek configuration. We know from proposition 17 that there will be some perturbation to a Dziobek configuration which lowers the potential, but we don't know that this perturbation moves us into K. When $n=4$, however, the only lower dimensional configurations are collinear and we have the stronger proposition 16.
Proposition 24. There exists at least one convex, planar, non-collinear central configuration of the four-body problem for each cyclic ordering of the bodies, hence at least 6 in all up to similarly in the plane.
Proof. If $x \in \partial K$ is a collinear configuration, then proposition 16 shows that every perturbation of x to a non-collinear configuration in \mathcal{N} will lower the potential. In particular, perturbing x into K will lower the potential. On the other hand, proposition 23 shows that the non-collinear boundary points also admit potential-lowering perturbations into K. So the minimizer of $\left.U\right|_{K}$ is in the interior as required.

Note the there are 6 components of Dziobek configurations with Δ 's having the convex sign patterns

$$
(+,+,-,-) \quad(+,-,+,-) \quad(+,-,-,+)
$$

and three more with the signs reversed. These correspond to the distinct cyclic orderings. If K_{0} is the closure of any one of these, we can apply the same argument to find a CC in its interior. We only need to note that the required potential-lowering perturbations can be made into K_{0}. \quad QED

In [48] it is claimed that the analogous result holds for $n=5$, but as noted above, more information about the behavior of planar five-body CC's under perturbations into Dziobek configurations seems to be needed.

Given that convex Dziobek configurations exist one can ask about their possible shapes. It is possible to use the equations (57) together with the positivity of the masses and the signs of the Δ_{i} to derive some simple geometrical constraints [22, 38].

14. Generic Finiteness for Dziobek Central Configurations

In the last section we will present a proof that there are at most finitely many similarity classes of Dziobek central configurations for generic choices of the masses. The proof is based on [27]. We will also sketch a proof that these central configurations are generically non-degenerate.

Proposition 25. For generic choices of the masses, there are only finitely many Dziobek central configurations up to similarity. In fact there is a massindependent bound on the number of such configurations valid whenever the number is finite.

In particular, this applies to planar CC's of the four-body problem and spatial but non-planar CC's of the five-body problem. For the four-body problem, the only non-Dziobek central configurations are the regular tetrahedron and the collinear CC's. So in this case it follows that the total number of CC's is generically finite. However, there is a stronger result [15]: the number of CC's is finite for all choices of positive masses and is at most 8472. This is proved by completely different methods which required extensive algebraic computations. Similar methods were applied to the spatial five-body problem in [14] with the result that the generic conditions on the masses mentioned in proposition 25 are made explicit. For the planar fivebody problem, Albouy and Kaloshin have recently proved generic finiteness with explicit genericity conditions [4]. It is still open whether or not there exist exceptional choices of five positive masses which admit infinitely many CC's but Roberts has an example involving masses of different signs [36]. The problem of finiteness for planar CC's was singled out by Steve Smale as the sixth of eighteen problems for twenty-first century mathematics [43]. But for $n>5$ even generic finiteness is open.

The rest of this section is devoted to the proof of proposition 25 . The key point is to find the dimension of the algebraic variety defined by the equations for Dziobek central configurations. If the dimension of the space of central configurations is the same as the dimension of the space of normalized mass parameters, then the generic finiteness will follow from general
theorems of algebraic geometry. For example, in figure 2, Euler's quintic equation defines a two-dimensional surface. The projection of the surface to the two-dimensional normalized mass space necessarily has zero-dimensional fibers, at least for generic masses. In this case, all of the fibers are finite.

We begin with equations (57) relating the quantities $S_{i j}$ from (56) and the Δ_{i} variables. However, we will make a few modifications. First of all, it is theoretically advantageous to work with complex, projective algebraic varieties which are defined by homogeneous polynomial equations. Define a new variable r_{0} such that $\lambda^{\prime}=r_{0}^{-3}$ so that

$$
S_{i j}=r_{i j}^{-3}-r_{0}^{-3} .
$$

Let $p=\frac{1}{2} n(n-1)$ be the number of mutual distance variables $r_{i j}$. We will think of the vector $r=\left(r_{0}, r_{12}, \ldots, r_{34}\right) \in \mathbb{C}^{p+1}$ as homogeneous coordinates for a point $[r] \in \mathbb{C} P(p)$, the complex projective space. Passing from r to $[r]$ can be viewed as an alternative way of normalizing the size of the configuration.

Next we suppress the mass variables from equations (57) by defining new variables $z_{i}=\frac{\Delta_{i}}{m_{i}}$. After clearing denominators we get polynomial equations

$$
\begin{equation*}
r_{0}^{3}-r_{i j}^{3}=\kappa z_{i} z_{j} r_{0}^{3} r_{i j}^{3} . \tag{58}
\end{equation*}
$$

The following proposition shows that by introducing another variable z_{0} we can get a set of equations which are separately homogeneous in the variables r and $z=\left(z_{0}, z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n+1}$. We will view z as a set of homogeneous coordinates for a point $[z] \in \mathbb{C P}(n)$.
Proposition 26. Suppose $r_{i j}$ are the mutual distance of a Dziobek central configuration for some choice of masses $m_{i}>0$. Let $r_{0}^{-3}=\lambda^{\prime}$ and let $[r] \in \mathbb{C P}(p)$ be the corresponding point in projective space. Then there is a point $[z] \in \mathbb{C P}(n)$ such that

$$
\begin{equation*}
z_{0}^{2}\left(r_{0}^{3}-r_{i j}^{3}\right)=z_{i} z_{j} r_{i j}^{3} \tag{59}
\end{equation*}
$$

Moreover, the Cayley-Menger determinant vanishes: $F(r)=0$.
Proof. It follows from proposition 22 and the definition of r_{0} that the there exist $z_{i}, \kappa \in \mathbb{R}$ such that (58) hold. Since $\kappa \neq 0$ we can define $z_{0} \in \mathbb{C}$ so that $\kappa z_{0}^{3}=r_{0}^{-3}$ and then we get equations (59).

QED
Equations (59) and the Cayley-Menger determinant are separately homogeneous with respect to the variables r and z so they define a projective variety in the product space $\mathbb{C P}(p) \times \mathbb{C P}(n)$. As usual, we need to exclude the collision configurations. Let

$$
\Sigma=\left\{([r],[z]) \in \mathbb{C P}(p) \times \mathbb{C P}(n): z_{0} r_{0} \prod_{i<j} r_{i j}=0\right\}
$$

Then we can define a variety, V, which contains all of the Dziobek central configurations:

$$
V=\{([r],[z]) \in \mathbb{C} P(p) \times \mathbb{C P}(n) \backslash \Sigma: F(r)=0 \text { and (59) hold }\}
$$

We will also work with the subvarieties obtained by setting some of the $z_{i}=0$. Let

$$
V_{k}=\left\{([r],[z]) \in V: z_{k+1}=\cdots=z_{n}=0\right\} .
$$

These are quasi-projective varieties, that is, they are difference sets $V=$ $X \backslash Y$ where X, Y are projective varieties. Much of the theory of complex, algebraic geometry applies to such difference sets. We will use $[9,32,39]$ as references for this theory. One important point is that every quasi-projective variety has a projective closure, defined as the smallest projective variety containing V. In general, this is smaller than the variety X.

The following result is crucial for proving the generic finiteness theorem we are after. It shows that the variety V containing the Dziobek configurations has the same dimension as the normalized mass space.
Proposition 27. The variety V has $\operatorname{dim} V=n-1$. More generally, $\operatorname{dim} V_{k}=k-1, k \geq 2$.
Proof. Let $\pi_{2}: \mathbb{C P}(p) \times \mathbb{C P}(n) \rightarrow \mathbb{C P}(n)$ be the projection. The proof for V consists of analyzing the fibers and image of the mapping $\pi_{2}: V \rightarrow \mathbb{C P}(n)$. Suppose $[z] \in \pi_{2}(V)$ and let $([r],[z]) \in V$. By definition of Σ we have $z_{0} r_{0} \neq 0$ so there will be a representative r of $[r]$ with $r_{0}^{3} z_{0}^{2}=1$. Then $r_{i j}$ satisfy

$$
\begin{equation*}
g_{i j}=\left(z_{i} z_{j}+z_{0}^{2}\right) r_{i j}^{3}-1=0 \tag{60}
\end{equation*}
$$

It follows that we have $z_{i} z_{j}+z_{0}^{2} \neq 0$ on $\pi_{2}(V)$ and that the mapping $\pi_{2}: V \rightarrow$ $\mathbb{C P}(n)$ has finite fibers. If we can show that that the projective closure $W=\overline{\pi_{2}(V)}$ has $\operatorname{dim} W=n-1$, general results from algebraic geometry give $\operatorname{dim} V=n-1$ as well.

The main point is to show that there exists a nonzero homogeneous polynomial $H(z)$ which vanishes on $\pi_{2}(V)$. This implies $\operatorname{dim} W \leq n-1$. We have $p+1$ equations for the p variables $r_{i j}$, namely, equations (60) and the Cayley-Menger determinant. To construct $H(z)$, begin by taking the resultant with respect to r_{12} of the Cayley-Menger determinant $F(r)$ and the polynomial g_{12}. The result is a polynomial involving z and the variables $r_{i j}$ but with r_{12} eliminated. Now take the resultant with respect to r_{13} of this new polynomial and g_{13}. Continuing in this way, we can eliminate all of the variables $r_{i j}$ obtaining a homogeneous polynomial $H(z)$ in the z variables alone. It is conceivable that $H(z)$ is identically zero and the next step is to show this is not the case.

Recall that the vanishing of the resultant is a necessary condition for two polynomials in a single variable have a common complex root. The polynomials may involve other variables which can be viewed as parameters. If the parameters are such that the leading coefficient of at least one of the two polynomials is nonzero, then the vanishing of the resultant is also sufficient for the existence of a common root. It follows that if $H(z)=0$ for some $z \in \mathbb{C}^{n+1}$ such that

$$
\begin{equation*}
z_{i} z_{j}+z_{0}^{2} \neq 0 \quad 1 \leq i<j \leq n \tag{61}
\end{equation*}
$$

then there do exist $r_{i j} \in \mathbb{C}$ such that equations (60) and the Cayley-Menger condition hold. Therefore, to show that $H(z)$ is not identically zero, it suffices to find a single point z such that (61) hold but for which the required $r_{i j}$ do not exist.

To this end, choose z such that $z_{0}=1, z_{i}=0,3 \leq i \leq n$ Then for $3 \leq i, j \leq n$ we have $z_{i} z_{j}+z_{0}^{2}=1$ and the equations $g_{i j}=0$ reduce to $r_{i j}^{3}=1$. So these $r_{i j}$ and their squares $s_{i j}$ are all third roots of unity. On the other hand, if we choose z_{1}, z_{2} so that

$$
z_{1} z_{2}+z_{0}^{2}=1 / \sqrt{8}
$$

then $r_{12}^{3}=\sqrt{8}$ and s_{12} is twice a third root of unity. We will show that with this z, the Cayley-Menger determinant does not vanish.

Lemma 3. Let $\omega_{i j} \in \mathbb{C}, 0 \leq i<j \leq n$, be third roots of unity. Then

$$
\left|\begin{array}{cccccc}
0 & 1 & 1 & 1 & \ldots & 1 \\
1 & 0 & 2 \omega_{12} & \omega_{13} & \ldots & \omega_{1 n} \\
1 & 2 \omega_{12} & 0 & \omega_{23} & \ldots & \omega_{2 n} \\
1 & \omega_{13} & \omega_{23} & 0 & \ldots & \omega_{3 n} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
1 & \omega_{1 n} & \omega_{2 n} & \omega_{3 n} & \ldots & 0
\end{array}\right| \neq 0 .
$$

Proof. The determinant can be expanded as a sum of monomials in the $\omega_{i j}$ with integer coefficients. Each monomial is equal to an integer multiple of $1, \omega$ or ω^{2} where $\omega=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$. Therefore the determinant is of the form $\alpha+\beta \omega+\gamma \omega^{2}$ where α, β, γ are integers. An expression of this form vanishes if and only if it is a multiple of the minimal polynomial of $\omega, 1+\omega+\omega^{2}$, that is, if and only if $\alpha=\beta=\gamma$. A necessary condition for this is that $\alpha+\beta+\gamma$ be divisible by 3 . Now the sum $\alpha+\beta+\gamma$ is the value of the determinant with all $\omega_{i j}=1$ which turns out to be $(-1)^{n} 4$. So the determinant cannot vanish.

It follows that our homogeneous polynomial $H(z)$ is not identically zero. Therefore the subvariety $Z=\{[z]: H(z)=0\} \subset \mathbb{C P}(n)$ has dimension $n-1$. The the projection $\pi_{2}(V)$ is contained in Z In fact

$$
\pi_{2}(V)=\{[z] \in Z:(61) \text { hold }\} .
$$

Since $\pi_{2}(V) \neq \emptyset$, at least some of the irreducible components of Z intersect the set where (61) hold. Let W denote the union of these irreducible components (W will be the zero set of those factors of $H(z)$ which are not divisible by any of the polynomials in (61)). Then $\operatorname{dim} W=n-1$ and the complement $W \backslash \pi_{2}(V)$ is a lower-dimensional subvariety. It follows that W is the projective closure of $\pi_{2}(V)$ and that $\operatorname{dim} W=\operatorname{dim} V=n-1$ as claimed.

The proof for V_{k} is similar, but we use the projection $\pi_{2}: V_{k} \rightarrow \mathbb{C P}(k)$ where we view $\mathbb{C P}(k)$ as the subset of $\mathbb{C P}(n)$ with $z_{k+1}=\cdots=z_{n}=0$. Again we need to see that the resultant $H(z)$ does not vanish identically on
$\mathbb{C P}(k)$. This follows because the point z with $H(z) \neq 0$ which we constructed above is actually in $\mathbb{C P}(k), k \geq 2$.

So far, we have discussed the variety V of Dziobek central configurations without fixing the masses. Next we discuss the mapping from V to the normalized mass space. A nonzero mass vector $m=\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ determines a point of projective space $[m] \in \mathbb{R} \mathbb{P}(n-1) \subset \mathbb{C P}(n-1)$. We will think of $\mathbb{C P}(n-1)$ as the normalized mass space. A generic mass vector will mean $[m] \in \mathbb{C P}(n-1) \backslash B$ where B is a proper subvarienty of $\mathbb{C P}(n-1)$. Note that if B is a such proper subvariety then $B \cap \mathbb{R} \mathbb{P}(n-1)$ is also a proper subvariety. This follows since any complex polynomial which vanishes identically on $\mathbb{R} \mathbb{P}(n-1)$ also vanishes identically on $\mathbb{C P}(n-1)$.

Relations between the variables $([r],[z]) \in V$ and the masses are derived from the fact that the vector

$$
\Delta=\left(\Delta_{0}, \Delta_{1}, \ldots, \Delta_{n}\right)=\left(\Delta_{0}, m_{1} z_{1}, \ldots, m_{n} z_{n}\right)
$$

is in the kernel of the Cayley-Menger matrix $C M(r)$ from (54). Let $K \subset$ $\mathbb{C P}(p)$ be the subvariety of mass vectors $[r]$ such that $\operatorname{rank} C M(r)<n$. If $[r] \in K$ then $r_{i j}$ cannot be the mutual distance of a Dziobek configuration. Consider the decomposition of V into irreducible components. Call an irreducible component W a Dziobek component if $W \not \subset K$. To study generic finiteness for Dziobek configurations it suffices to consider each Dziobek component separately.

If $W \subset V$ is a Dziobek irreducible component, then the vector Δ is uniquely determined up to a constant multiple. There are two cases depending on whether or not some of the variables z_{i} vanish identically on W, a possibility we will denote by $z_{i} \equiv 0$. If $z_{i} \not \equiv 0$ for all i then the subset $W_{0}=\left\{([r],[z]) \in W: z_{i}=0\right.$ for some $\left.i\right\}$ is a proper subvariety of W. The uniqueness of Δ implies that $[m]$ is uniquely determined for $([r],[z]) \in W \backslash W_{0}$. This means that we have a rational mass mapping $W \rightarrow \mathbb{C P}(n-1)$ assigning to each point of W a unique, projective mass vector. Since $\operatorname{dim} W=n-1=\operatorname{dim} \mathbb{C P}(n-1)$ it follows that a generic [m] has a finite number of preimages in W. More precisely, either the mass mapping takes W into a proper subvariety of the mass space or not. In the first case the generic mass point $[m]$ has no preimages in W. In the latter case, we say that the mapping is dominant and the generic point $[m]$ has a nonzero but finite number of preimages, the number being bounded by some bound which is independent of $[m]$.

On the other hand, if some $z_{i} \equiv 0$ on W we may assume without loss of generality that W is a component of V_{k} from proposition 27 . Since $z_{k+1}=$ $\ldots=z_{n}=0$ the $(n-k)$ masses $m_{k+1}=\ldots=m_{n}$ are arbitrary. But other masses are unique up to a constant factor. Then proposition 27 shows that

$$
\tilde{W}=\{([r],[z],[m]:([r],[z]) \in W, C M(r) \Delta=0\}
$$

is a subvariety of the product $\mathbb{C P}(p) \times \mathbb{C P}(n) \times \mathbb{C P}(n-1)$ of dimension $(k-1)+(n-k)=n-1$. Projection onto the mass space defines a rational
map $\tilde{W} \rightarrow \mathbb{C P}(n-1)$ and the same reasoning as before shows that a generic mass point has a finite number of preimages in W. This completes the proof of generic finiteness.

The generic non-degeneracy of DCC's follows from another nice fact about rational maps of varieties. Consider a dominant rational map between varieties of the same dimension. Then for a generic $[\mathrm{m}]$ in the range space, all of its preimages are smooth points (meaning that the variety is locally a complex manifold) and the mapping is a local diffeomorphism. If this holds for a map of complex manifolds then it also holds for the real parts. Applying this theory to the real part of the varieties \tilde{W} in $\mathbb{R} \mathbb{P}(p) \times \mathbb{R} \mathbb{P}(n) \times \mathbb{R} \mathbb{P}(n-1)$ shows that the variety of DCC's looks like a finite covering map near a generic real [m].

On the other hand, consider Dziobek CC's as critical points of U in \mathcal{M}, the quotient space of \mathcal{N} under the action of the rotation group. Since we are working in \mathbb{R}^{n-2} the Dziobek configurations have top dimension and the quotient space is locally a manifold. The implicit function theorem shows that DCC has a unique smooth continuation to nearby masses with the map to mass space a local diffeomorphism if and only if it is non-degenerate critical point in \mathcal{M}. So generic masses admit only non-degenerate DCC's.

15. Some Open Problems

We will close these notes by mentioning some open questions about central configurations. Perhaps the simplest one to state if not to solve, is Smale's sixth problem about finiteness of the number of central configurations in the plane for fixed positive masses. As noted in the last section, even the weaker question of generic finiteness is open for $n>5$. One could also consider the same problem in higher dimensions or for S-balanced configurations with both the masses and the symmetric matrix S fixed. The generic finiteness problem seems more tractable in light of Roberts' example of a continuum of solutions for fixed non-positive masses and the difficulties preventing Albouy and Kaloshin from handling all positive masses in the five-body case. It seems that opening up the problem to allow SBC's might make a positive mass counterexample possible.

Another type of open problem is about the Morse indices of CC's and SBC's. As noted in section 10, not much is known about the Morse indices of non-collinear CC's and even about collinear SBC's. Good results about this would improve the Morse theoretical estimates of the total number of critical points. It was a lack of information about the Hessian in directions normal to the subspace occupied by the configurations which prevented us from extending the existence proof for convex Dziobek configurations to $n>4$ bodies. The most natural conjecture, that the normal blocks of the Hessian are negative semi-definite, is not true in general. There are planar CC's for which the potential increases in certain normal directions [26, 30].

As far as we know, the convex Dziobek configurations of the four-body problem are unique given the ordering of the bodies but no proof has been given. The same problem could be posed for $n>4$ once the existence problem is solved.

Another group of open questions concerns a topic not treated in these notes, namely the dynamical stability of relative equilibrium and homographic motions. Given a planar CC we saw that we simple relative equilibrium solution where the bodies rigidly rotate around their center of mass. In rotating coordinates this becomes an equilibrium and one can ask about its linear stability. In particular one can ask if there is any relation between the eigenvalues at the equilibrium point and the Morse index of the critical point. All of the known examples of linearly stable relative equilibria correspond to critical points which are local minima. Is this always the case ? In light of Albouy and Chenciner's theory of higher-dimensional relative equilibria, one can generalize the problem to ask for the relationship between the properties of an SBC as a critical point and as an equilibrium point of the reduced equations of motion. In fact, the problem of linear stability of higher-dimensional relative equilibria seems to be completely open.

References

1. A. Albouy, Integral Manifolds of the N-body problem., Invent. Math. 114 (1993), 463488.
2. A. Albouy, Recherches sur le probléme des configurations centrales. Preprint (1997).
3. A. Albouy and A. Chenciner, Le problème des n corps et les distances mutuelles. Annals of Math. 176 (2012), 535-588.
4. A. Albouy and V. Kaloshin, Finiteness of central configurations of five bodies in the plane. Inv. Math. 131 (1998), 151-184.
5. V.I. Arnold, Mathematical Methods of Classical Mechanics. 2nd ed. Springer-Verlag, New York, (1989).
6. M. Berger, Geometry I. Springer-Verlag.
7. J. Chazy, Sur certaines trajectoires du problème des n corps. Bull. Astron. 35 (1918), 321-389.
8. A. Chenciner, The Lagrange reduction of the N-body problem, a survey. arXiv:1111. 1334(2011).
9. D. Cox, J. Little, and D. O'Shea, Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra. Springer-Verlag, New York, (1997).
10. H.S.M. Coxeter, Regular Polytopes. Dover, New York, (1973).
11. O. Dziobek, Über einen merkwürdigen Fall des Vielkörperproblems. Astron. Nach. 152 (1900), 33-46.
12. L. Euler, De motu rectilineo trium corporum se mutuo attrahentium. Novi Comm. Acad. Sci. Imp. Petrop. 11 (1767), 144-151.
13. M. Hampton Concave Central Configurations in the Four Body Problem. thesis, University of Washington (2002).
14. M. Hampton and A.Jensen Finiteness of spatial central configurations in the five-body problem. Cel. Mech. Dyn. Astr. 109 (2011), 321-332.
15. M. Hampton and R.Moeckel Finiteness of relative equilibria of the four-body problem. Inventiones Mathematicae 163 (2006), 289-312.
16. D. Hilbert, S.Cohn-Vossen, Geometry and the Imagination. Chelsea, New York, (1952).
17. R.P. Kuz'mina, On an upper bound for the number of central configurations in the planar n-body problem. Sov. Math. Dokl. 18 (1977), 818-821.
18. J.L. Lagrange, Essai sur le problème des trois corps. Euvres, vol. 6 (1772).
19. R. Lehmann-Filhés, Ueber zwei Fälle des Vielkörpersprblems. Astron. Nach. 127 (1891), 137-143.
20. J. Llibre, On the number of central configurations in the N-body problem. Celestial Mech. Dynam. Astronom. 50 (1991), no. 1, 89-96.
21. R.C. Lyndon, Groups and Geometry. London Mathematical Society Lecture Notes Series 101, Cambridge University Press (1985).
22. W.D. MacMillan and W. Bartky, Permanent Configurations in the Problem of Four Bodies. Trans. Amer. Math. Soc. 34 (1932), 838-875.
23. C.K. McCord, Planar central configuration estimates in the n-body problem. Ergod. Th. and Dynam. Sys. 16 (1996), 1059-1070.
24. J.C. Merkel, Morse theory and central configuration in the spatial N-body problem. J. Dyn. Diff. Eq. 20 (2008), no. 3653-668.
25. R. Moeckel, Relative equilibria of the four-body problem. Ergod. Th. and Dynam. Sys. 5 (1985), 417-435.
26. R. Moeckel, On central configurations. Math. Zeit. 205 (1990), 499-517.
27. R. Moeckel, Generic Finiteness for Dziobek Configurations., Trans. Amer. Math. Soc. 353 (2001), 4673-4686.
28. R. Moeckel, Relative equilibria with clusters of small masses. Jour. Dyn. Diff. Eq. 9 (October 1997), no. 4
29. R. Moeckel, Celestial Mechanics - especially central configurations. http://www.math. umn.edu/~rmoeckel/notes/Notes.html.
30. R. Moeckel and C. Simó, Bifurcations of spatial central configurations from planar ones., SIAM J.Math.Anal. 26 (1995), no. 4, 978-998.
31. F.R. Moulton, The Straight Line Solutions of the Problem of n Bodies. Ann. of Math. 12 (1910), 1-17.
32. D. Mumford, Algebraic Geometry I, Complex Projective Varieties. Grundlehren der Mathematische Wissenschaften 221, Springer Verlag, Berlin Heidelberg New York (1976).
33. I. Newton, Philosophi naturalis principia mathematica, Royal Society, London (1687).
34. F. Pacella, Central configurations of the n-body problem via equivariant Morse theory., Arch. Rat. Mech 97 (1987), 59-74.
35. J. Palmore, Classifying relative equilibria, I. Bull. AMS 79 (1973) 904-908, Ii, Bull. AMS 81 (1975) 489-491, III, Lett.Math.Phys. 1 (1975), 71-73.
36. G. Roberts, A continuum of relative equilibria in the five-body problem,. Phys. D 127 (1999), no. 3-4, 141-145.
37. D. Saari, On the Role and Properties of n-body Central Configurations. Celestial Mech. 21 (1980), 9-20.
38. D. Schmidt, Central configurations in \mathbb{R}^{2} and \mathbb{R}^{3}, in Hamiltonian Dynamical Systems, Contemporary Math. 81 (1988), 59-76.
39. I.R. Shafarevich, Basic Algebraic Geometry 1, Varieties in Projective Space. Springer Verlag, Berlin Heidelberg New York (1994).
40. M. Shub, Diagonals and relative equilibria. Appendix to Smale's paper, in ManifoldsAmsterdam, Springer Lecture Notes in Math. 197 (1970), 199-201.
41. C. Simó, Relative equilibria in the four-body problem. Cel. Mech. 18 (1978), 165-184.
42. S. Smale, Topology and Mechanics, II, The planar n-body problem. Invent. Math. 11 (1970) 45-64.
43. S. Smale, Mathematical problems for the next century. Mathematical Intelligencer 20 (1998), 7-15.
44. F. Tien, Recursion Formulas of Central Configurations. Thesis, University Of Minnesota (1993).
45. A. Wintner, The Analytical Foundations of Celestial Mechanics. Princeton Math. Series 5, Princeton University Press, Princeton, NJ (1941).
46. Z. Xia, Central configurations with many small masses. J. Differential Equations 91 (1991), no.1, 168-179.
47. Z. Xia, Central configurations for the four-body and five-body problems. Preprint.
48. Z. Xia, Convex entral configurations for the n-body problem. Differential Equations 200 (2004), no.1, 185-190.
